The story

We would like to quantitatively measure the **happiness** of written speech. Our texts are **constitutional preambles** from all over the world. The method we use is based on the paper [1]. Moreover, we **expand** their method to the **Tf-idf** metric [4].

Input: The LabMT

• **labMT** [3] 1.0: 10222 ranked words.

- Union of 4 sets (10222):
- 5000 most frequent words in **Twitter** 5000 most frequent words in **Google Books** 5000 most frequent words in **music lyrics** 5000 most frequent words in **New York Times**
- The ranking of these words obtained from humans using **Amazon's** Mechanical Turk.

The ranking is from 1(SAD) to 9(HAPPY).

• The ranking is the average of all rankings.

We denote with h(w) the estimate of average happiness for each word $w \in$ labMT.

Loading the LabMT

- Exclude words that their ranking is between $5 \Delta H < h(w) < \Delta h + 5$. Remove neutral words, to enhance differences!
- $\Delta H = 1$ Number of words: 3731
- $\Delta H = 2$ Number of words: 1008
- $\Delta H = 3$ Number of words: 77
- Using different subsets of labMT highlight different aspects of our data.

Example

If we use words with happiness ranking between 7 and 9, we highlight the positive aspect of a text.

Input: The Dataset

The data set consists of 477 **constitutional preambles** from 171 countries. Every file name is related to a specific **date**.

- 477 in total: $84 \in [1787 1899]; 355 \in [1901 1999]; 38 \in [2000 2011]$ • Countries that do not exist, or different name.
- Vocabulary that is different from today.
- Translation cannot fully transfer the emotions that has the initial word.

Sentiment Analysis of Constitutions

Athina Panotopoulou, Daniel Rockmore, Nick Foti

Computer Science Department, Dartmouth College

Preprocessing the Dataset

We are searching for the **exact word**: "we've", "you've": two distinct words

- Convert all characters to lower case.
- Remove special characters such as : .,?-:
- Replace with gaps.

Computing the happiness

Load the labMT.

Pre-process the texts of our data set C.

- Compute the happiness ranking of each $c \in C$, $h_{f,avq(c)}$:
- Create the set of words W(c) that are in the preamble c.
- Compute the frequency $f_c(w)$ for each word w in c.
- labMT: $N(c) = W(c) \cap labMT$.
- For each word w in N(c) we have a rank h(w). \odot The ranking of the constitutional preamble c can then be computed by: $h_{f,avg(c)} = rac{\sum_{w \in N(c)} h(w) f_c(w)}{\sum_{z \in N(c)} f_c(z)}$

An extension

We use a different way of ranking the average happiness: $h_{Tf \times Idf, avg(c)}$

- words w that belongs to N(c), $f_c^m = max_{w \in N(c)} f_c(w)$.
- $Tf \times Idf_c(w) = \frac{f_c(w)}{f^m} \times \log \frac{|C|}{|C_w|}$.

Results: Pearson Correlation Factor

We compute the Pearson Correlation between happiness ranking and other factors [5] —no significant correlation:

Factor

Limited Government Absence of Corruption Order and Security Fundamental Rights Open Government Regulatory Enforcem Civil Justice Criminal Justice

The results tend to lie on the neutral interval, having a positive tendency. As the ΔH grows the interval grows. It tends to shrink again for $\Delta H = 3$, but now to the left side of the axes-x.

```
• We define N(c) as the set of words that are both in c and
```

• |C|: The size of our data set, the number of constitutional preambles. • $|C_w|$: The number of constitutional preambles that contain the word w. • f_c^m : The maximum frequency we have on constitutional preamble c over all

	Tf-idf
t Powers on	0.13 0.13
	$0.18 \\ 0.08 \\ 0.14$
nent	$0.06 \\ 0.1 \\ 0.09$
	0.00

and the darkest colour the highest.

References and Tools:

- 2011.
- [3] labMT http://www.plosone.org.

Results: Histogram

Results: Heatmap

The palest colour represents the lowest happiness score for the specific parameters

Based on raw frequency, $\Delta H = 0$.

References

[1] Peter S. Dodds, Kameron D. Harris, Isabel M. Kloumann, Catherine A. Bliss Christopher M. Danforth, Temporal Patterns of Happiness and Information in a Global Social Network: Hedonometrics and Twitter, http://www.plosone.org/article/info:doi/10.1371/journal.pone.0026752,

[2] Google Playground, code.google.com/apis/ajax/playground/, 2013.

[4] Wikipedia, http://en.wikipedia.org/wiki/Tf%E2%80%93idf, 2013.

[5] The Rule of Law Index, http://worldjusticeproject.org/rule-of-law-index, 2013.

[6] Wikipedia, http://en.wikipedia.org/wiki/ISO_3166-1, 2013.