
STYLIZED 2D FABRICATION OF NON-PHOTOREALISTIC IMAGES

A Thesis
Submitted to the Faculty

in partial fulfillment of the requirements for the
degree of

Doctor of Philosophy

in

Computer Science

by Athina Panotopoulou

Guarini School of Graduate and Advanced Studies
Dartmouth College

Hanover, New Hampshire

August, 2020

Examining Committee:

(chair) Emily Whiting, Ph.D.

Xing-Dong Yang, Ph.D.

Wojciech Jarosz, Ph.D.

Sylvain Paris, Ph.D.

F. Jon Kull, Ph.D.
Dean of the Guarini School of Graduate and Advanced Studies



ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted.  Also, if material had to be removed, 

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

).  Copyright of the Dissertation is held by the Author. 

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

28089689

28089689

2020





Abstract

A current trend in computer graphics is the use of programmable tools that allow non-experts

to engage in the design of physical prototypes. Within fabrication, one area of research

focuses on non-photorealistic images which are stylized to depict a particular aesthetic quality

or convey key information. In cases where authenticity is demanded or the images need to

be manipulated, fabrication is necessary. Non-photorealistic image fabrication involves two

challenges: identifying and abstracting key information during design and considering material

restrictions during fabrication. This thesis showcases two examples for fabricating new types

of non-photorealistic images, the first involving watercolors, and the second producing tactile

images on microcapsule paper for improved shape understanding for the blind. The watercolor

project is the first to fabricate watercolorized images and produces color-gradients using a

wet-on-wet technique by limiting the usually unpredictable outcome of this medium. The tactile

project implements a novel multi-projection line drawing design for the depiction of everyday

3D shapes, different from currently used designs. For the fabrication of watercolor images, we

propose an image analysis pipeline which inputs an image, extracts key information elements

such as color, gradients, and details, and combines them to design wood stamps produced by a

laser cutter. We then paint the stamps with watercolors and press them on water-sprayed paper,

following a carefully designed fabrication process. For the fabrication of the tactile images, we

gather characteristics that convey shape information through touch from studies in cognitive

psychology, human-computer interaction, and our own formative studies. We process a 3D

pre-segmented object, compute a multi-projection line drawing of the shape’s cross sections,

and laser engrave the drawings as tactile images. We run user studies that show the usefulness

of stylization on both image designs. These two pipelines highlight the importance of image and

geometry processing and analysis, key approaches, in the two applications, one of an artistic

and another of a utilitarian nature. These graphics approaches play the role of “painter” and

“designer of tactile graphics” and allow non-experts accessibility to these challenging fabrication

design spaces.
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1
Introduction

Throughout history, humans have conceptualized and materialized hand-made artifacts [164].

With materials like stone, wood, metal, and clay, humans constructed building tools [1, 2, 5, 8]

that they could use manually to make more complex, beautiful, and elaborate objects such as

garments [11], ceramics [8], jewelry [6], musical instruments [10], and books [12]. However, up

to the 19th century, the artifacts were mainly an outcome of the experience and talent of artisans,

and the process to create high-quality objects was time-consuming [3].

During the industrial revolution (18th – 19th centuries), new paths opened with the invention

of motors, energy-powered machines, and heavy duty tools for construction and material

processing. These machines [9] made production of objects faster and easier, allowing the needs

of the rapidly growing population to be met. As these machines were created for mass production

in industrial environments, they did not allow for customization. Also, during this period, the

small-scale machines, such as electric saws or drills, did not allow for much creative capacity

to non-experts. However, with the recent development of small-scale easily programmable

fabrication tools, such as laser cutters (1965-1970) and 3D printers (1985-1990), expert designers

can fabricate with less effort high-quality artifacts which are useful and aesthetically pleasing.

Such an example is the coffeepot in Figure 1.1(d). This silver coffeepot is casted, meaning that

a form is molded to allow for fabrication of multiple copies. The manual fabrication of its cast

requires a highly experienced craftsman; the process takes several weeks and mistakes cannot be

easily corrected. Here, as can be seen from Figure 1.1(c), the cast of the coffeepot is 3D-printed.

1



(a) Line drawing (b) Digital design (c) 3D printed cast (d) Silver coffeepot

Figure 1.1: Coffeepot that was materialized by Factum Arte (2010) based on the line
drawing (a) of Piranesi (1770). The digital design (b) was 3D printed (c) to a cast, be-
fore it was made with silver (d). Fast prototyping tools make fabrication, but not design,
easier. [©Factum Arte, Madrid, Spain (factum-arte.com)]

This type of research, namely computational fabrication, engages computational capabilities

for the realization of expert domain artifacts.

1.1 Computational Fabrication

Researchers from different fields, such as material scientists, mechanical engineers, computer

scientists, mathematicians, and artists, have been using fast prototyping tools for a variety of

creative and functional tasks. Particularly, the graphics community, over the past 15 years,

has noticeably increased its research into computational fabrication with the development

of new hardware (e.g., position correcting tool [351], stylus [334]), new software (e.g., 3D-

modeling [352], functional mechanisms [216], multi-material printing [272, 383]), and new

algorithmic approaches (e.g., winding number computation [37]). This research has resulted

in making computer numerical control machines (CNC) or rapid prototyping devices more

accessible and more versatile.

Despite the advantages of these technologies, the design process is still incredibly challeng-

ing; while it is somehow straightforward to 3D print from a digital design, e.g., from the digital

design in Figure 1.1(b) the cast in Figure 1.1(c), it is not as obvious how to design such a 3D

(three-dimensional) shape. Therefore, another branch of computational fabrication research

focuses on providing advanced design capabilities [48], either by targeting high-level features
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(e.g.,light propagation [331], stress [365], elasticity [282, 366], sturdiness [460], and material

consumption [424]), or by accessing expert design domains (e.g., furniture making [367, 439],

knitting [306], articulated characters design [34], and spray painting [380]). These improve-

ments make it possible to design personalized objects with great attention to detail, as well as

to replicate the process of fabrication. Improving the design in these ways is also important

because it is more sustainable and provides a larger number of people access to design; amateurs

gain access to accurate design, fast prototyping, and, in general, less labored processes [487].

1.2 Non-Photorealistic Rendering

A different area of design, closely related to the works I discuss here, focuses on the creation of

images. However, the focus is not images that faithfully resemble photographic results, namely

photorealistic images [15, 133, 296, 333], like the rendering of the digital model in Figure 1.1(b).

Instead, the focus is on stylized images, often called non-photorealistic images [225, 248].

Stylized images were traditionally developed by hand in arts and sciences, and later in computer

graphics computationally in the sub-field of non-photorealistic rendering. A representative

example of non-photorealistic imagery is the line-drawing in Figure 1.1(a); lines have been used

instead of smooth shades which make the image less realistic but the shape more pronounced

and the drawing more aesthetically notable. Researchers in non-photorealistic rendering provide

computational approaches for the design of stylized images, to either convey information

(e.g., [244]) or create an artistic depiction (e.g., [46, 162]). The question then becomes: why is

it necessary to fabricate images with real materials and not only design virtual ones? Especially

when considering that by introducing real materials we introduce further difficulties in the

process.

Real materials are necessary when authenticity is a required aesthetic quality, such as the

use of oil-paints, pens, and pencils for creating artistic productions. For example, as one moves

closer to the watercolor painting of George Grosz (Figure 1.2(a)), one can notice delicate

details, including the texture of the paper and the difference in granularity between the pigments

(Figure 1.2(b)). This interplay of real materials defines one quality component of a real painting,
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something that a virtual drawing lacks. There might be psychological reasons for people being

interested in creating and buying paintings [29,318]. For example, research suggests that images

made of real materials amplify the emotional response of the observer [415]. Real materials are

not only used to create authentic works, but they are also used when images need to be handled,

such as the example of the shadow theater figure shown in Figure 1.2(c). Other examples falling

into this category are puzzle pieces or self-shadowed and caustic images. Because of this,

researchers are motivated to fabricate non-photorealistic images for different tasks and from

different materials. The next section describes key works that bridge the fields of computational

fabrication and non-photorealistic rendering, which is the subject of this thesis.

(a) Watercolor painting (b) Close-up (c) Shadow theatre figure

Figure 1.2: In some cases images need to be fabricated: to display an authentic qual-
ity, such as in the case of the Twilight watercolor painting (a) of Georg Grosz (1923)
[©Museo Thyssen-Bornemisza, Madrid, Spain (museothyssen.org)], or to be interacted
with such as in the case of a shadow puppet, Java (1911) Figure (c) [Daderot, Peabody
Museum, Cambridge, USA (wikimedia.org)]

1.3 Non-Photorealistic Rendering in Computational Fabrication

This thesis provides the means for the fabrication of two types of images: images made with

watercolor paints, i.e., watercolor woodblock prints, and graphics made with microcapsule paper,

i.e., tactile illustrations. To identify and combine key design information for the watercolor

woodblock prints, we examine hand-made watercolor pieces of art and tutorials on watercolor

painting, and we enumerate a set of information elements (i.e., colors, semantic boundaries,
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smooth intensity gradients, details, and color gradients) and how these elements should be

maintained. In the second work regarding tactile illustrations, we examine tutorials on tactile

images and prior research in human cognition, and we design a pipeline that clearly presents a set

of information elements which are identified to be key in shape understanding by individuals with

blindness (i.e., surface geometry, topology/connections, viewpoints, and shape segmentation).

While researchers that work across computational fabrication and non-photorealistic render-

ing use a variety of real-world materials to manufacture images (e.g., [52,132,190,222,237,355,

456, 471, 481]), as far as we know, graphics research has not yet explored images made with

either watercolors or microcapsule paper. The fabrication for these two projects is important

because it allows, in the first project, for the production of an authentic art image, and in the

second project, for the tactile exploration of the depicted 3D shape. Watercolor is a difficult

painting medium including advanced techniques where the wet paint is placed on a wet surface

and requires training to produce a somewhat predictable outcome. Tactile microcapsule paper is

a material that is used extensively in the blind community to convey pictorial information. In all

cases, stylized images are first designed, then fabricated, and finally tested.

Gaining control over the labored and time-consuming process of design is hard, as is shown

by the many years researchers have spent in designing new image making approaches. Harold

Cohen [95–97, 97–99], back in 1979, created some of the first works in fabrication of non-

photorealistic images, producing novel algorithmic compositions (Figure 1.3(a)). In one of his

articles he mentions that it took him 15 years before he introduced colors in the process and 20

years to identify and fine-tune the rules of color composition [100]. Similarly, Lindemeier et

al. [246–249], over a number of years, explored a range of media, including black and white ink

and acrylic paints and algorithmic methods (Figure 1.3(b)).

One approach of image design is by abstracting key input information and combining

it. When the input is an image (e.g., Figure 1.4(a)), extracted elements can include edges

(Figure 1.4(b)) or depth values (Figure 1.4(c)). We often collect this type of information using

image processing and analysis, as in the watercolor project. On the other hand, when the input

is a 3D shape we use geometry processing and analysis, as in the tactile project. While key

elements can be extracted with the same techniques for different image fabrication projects,

5



(a) Computer-generated ink [245] (b) Pen drawing [245] (c) Ink with brush [415]

Figure 1.3: Representative examples of machine-made images. In these first works, the
images were black and white. In later works, more colors and a greater variety of media,
such as oils, dyes, and acrylic paints, were added. The composition in (a) is generated
by the computer, while in (b) and (c) the composition is stylized from the input. [Harold
Cohen (1984), Victoria and Albert Museum, London, UK, (collections.vam.ac.uk)] [Lin-
demeier [245] (2010), “e-David: Non-Photorealistic Rendering using a Robot and Visual
Feedback”] [Tresset and Leymarie [415] (2012), “Sketches by Paul the Robot”]

the way this information is used and combined differs because of the different media and tasks.

For example, in the pen-drawn portrait by a process designed by Tresset and Leymarie [415],

Figure 1.3(c), edges and shading were extracted, similar to our work in watercolor, but the

process differs due to the different media. While Tresset and Leymarie [415] chose the use

of limited edge orientations for the design of a discrete level of shading based on personal

observation of pen art pieces, we fabricate continuous gradients, which result from the diffusion

of paints in the water.

In terms of fabrication, researchers have become unconventional in order to achieve the

artistic styles they wish. Stippling, a depiction technique made of dots, has been researched for

a couple of decades as a virtual rendition in graphics [278], and has only lately been explored in

fabrication. Galea et al. [138] used a creative fabrication approach; drones flew along a canvas

holding sponges saturated with black ink and touched the canvas lightly, leaving a soft spattering

of ink (Figure 1.5(a)–(c)). While their work focuses on how to control the drones, physical

limitations such as inconsistent ink absorption or ink running (Figure 1.5(c)), prevent error-free

fabrication, a difficulty that only researchers working with real materials face.

As it has been pointed out, computational design allows for absolute freedom, while com-
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(a) Input Image (b) Edge map (c) Depth map

Figure 1.4: Image analysis approach to design. The input is Raphael’s Madonna in the
Meadow, painting 1505 (a) and edges(b) and depth values(c) are extracted. [Photograph
DcoetzeeBo, Kunsthistorisches Museum, Wien, Austria, (wikimedia.org)], [Images Re-
ichinger et al. [346] (2011), “High-Quality Tactile Paintings”]

(a) Drone (b) Virtual design (c) Physical design

Figure 1.5: Non-standard approach to fabricate images. Here Galea et al. use drones (a)
to create a stippled image (b). However, they face problems that in virtual design are not
present, such as the dripping of the paints (c). [Galea et al. [138] (2016), “Stippling with
aerial robots”]

putational fabrication implies deriving, operating, and putting in place strategies to realize the

physical design. Algorithms have been developed which work exceptionally well for specific

classes of materials, but unfortunately, not all media effects fall within these narrow confines. In

contrast to other research areas, in which parameter tuning would result in a technique suitable

for different materials (e.g., rendering differently textured materials such as leather and wood
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in a unified way, rendering scenes with different participating media such as fog and clouds,

or modeling solids and liquids such as sand and gelatin [20, 193, 463]), that is not the case for

this type of work. Fabrication needs to be fine-tuned to the specific material and task. While

simulation techniques have succeeded in predicting the behavior of a range of materials and

tasks, not all image making results can be accurately predicted (e.g., reflectance microfacets

for projected caustic images and refractive multi-layered transparent filters for light-source

dependent multi-images [36, 447]). Many materials, like watercolors, are also some of the

most difficult to replicate, since the environment is not fully controllable. Researchers have

pointed out such difficulties and used visual feedback and made simplifications in order to

achieve high quality results. For example, visual feedback was needed in the work of Tresset

and Leymarie [414] (Figure 1.3(c)); they mention that if the simulation of both the drawing

process and the robot action was sufficiently precise, this external visual feedback would not be

necessary. Similarly, Lindemeier et al. [248] applied black ink, with a robotic arm, and allowed

to dry before painting in the same place to simplify the process, and noted in his later work

that “incorporating wet-on-wet paint interaction will be a very challenging problem, but we

think that this results in much more aesthetic paintings and new opportunities of creating artistic

imagery.” [246]. In the first project of this thesis, we implement the wet-on-wet technique by

applying the paints with woodblocks and the water with a water-spray and make for the first

time watercolor multi-color gradients. We accept the variations of this challenging and unstable

material, the watercolor, and try to limit the uncontrollable effects of diffusion in places they

were needed to replicate effects created by highly experienced artists. Similarly, the use of a

printing press for the creation of watercolor images and the laser cutter for the creation of the

tactile images are both non-standard fabrication approaches.

Unlike research on non-stylized images [272, 325], in non-photorealistic imagery it is

still unclear how to measure the success of the design. One way to test the effectiveness of

stylized images is conducting studies that involve human subjects. User studies are suitable

in visualization, because images are judged using human criteria. However, because working

with human subjects is a time and resource intensive process, in most cases it is omitted. As

mentioned in the review of Isenberg et al. regarding how often user studies are conducted,“it
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is interesting to see that their prevalence was relatively low” [189], as shown in Figure 1.6 in

which the percentage of human participation is less than 20%. The evaluation, in some cases,

can be done quantitatively by using the difference between the filtered and input images [415].

Aesthetically, though, this does not test the image quality as assessed by professionals with

expert knowledge. Lindemeier et al. [248] highlight that an: “interesting question for the future

would be a numerical evaluation of the painting results. Appropriate statistical means have to

be found to compute the quality of different artistic representations.” Therefore, we follow the

approach of human testing in the works of this thesis. This is addressed in the watercolor project

by using visual inspection and conducting an informal user study with art students. In the tactile

work, the success of the design space was tested by running a comparative user performance

study populated by blind individuals to test the fabricated prototypes.

Figure 1.6: In many cases, testing with human participants is omitted. Review in IEEE
visualization is showing that less than 20% of works conduct user studies (red box).
[Isenberg et al. [189] (2013), “A systematic review on the practice of evaluating visu-
alization”, IEEE]

1.4 Contributions and Thesis Overview

In sum, the goal of this dissertation is to develop techniques for the computational fabrication

of two types of images that have not been previously examined in graphics, specifically wa-
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tercolorized and tactile images for shape understanding. These two non-photorealistic images

are made of real materials. For the design we extract key information elements, for the fabri-

cation we use non-conventional approaches, and for the testing we conduct user studies. Our

techniques not only enable anyone with the necessary resources to produce watercolorized and

tactile images, using minimal guidance as input, but also provide other researchers baselines to

compare and improve upon.

The work in this dissertation builds upon artistic elements of watercolor painting, as well as

the sense of touch in human perception. The major contributions are:

• a fabrication-aware pipeline for the design of watercolorized images including an approach

for the design of single and multi-color gradients;

• a fabrication procedure for creating watercolorized images (Figure 1.7(a));

• an algorithm for the design of tactile images with improved shape understanding for the

blind; and

• a format for a user study to test tactile images on shape understanding (Figure 1.7(b)).

Recent approaches in graphics have focused on how to fabricate images using a variety of

materials. While there is much prior work in the fabrication of images in graphics (Chapter 2),

works with watercolor and microcapsule paper have not drawn much attention.

In watercolor painting, similar to the painting in Figure 1.8, most often a limited number of

paints and water are applied with brushes on a paper, and the interactions between the paints

and water create unique diffusion patterns. Another common material is masking fluid, which

prevents the paints and water from touching the paper, and allows distinction between wet and

dry areas which change the diffusion of paints. For example, in the painting in Figure 1.8, there

is much diffusion around the model, but much less in it. Unfortunately, the abstract watercolor

painting, with the delicate color gradients and finely detailed contours can be challenging

for non-experts to effectively create. Specifically, the challenge lies on deciding where the

abstractions, gradients, and details should be placed and executing that placement. We take

inspiration from color gradations and propose a novel pipeline for the design and fabrication of
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(a) Watercolorized image (b) Tactile Image

Figure 1.7: The two types of stylized images discussed in this thesis. The first, a water-
colorized image (a), is fabricated with watercolor paints for the first time in graphics and
displays an authentic style. The second, a tactile image (b), conveys shape information to
individuals with blindness.

watercolorized images (Chapter 3). We first study artists working with the medium as well as

watercolor images themselves and identify prominent characteristics. We also experiment with

watercolor to identify a way to resolve its uncontrollability, resulting in the use of woodblock

printing. To design the woodblocks, we extract key elements using image analysis to identify

and guide the placement of pigments and masking fluid on paper. Using a semi-automatic

fabrication process, the pigments are transferred first to laser cut wooden stamps (woodblocks)

and along with sprayed water, are then transferred on the paper. The woodblocks can be reused

to produce multiple copies but each print is unique due to the physical process. The final piece

depicts the desired scene while exhibiting the distinctive features of watercolor. The images

are non-photorealistic and convey a particular abstract style, created by smooth gradations of a

limited number or colors, similar to Figure 1.7(a).

In contrast to this earlier work, the goal of which is artistic, the next image type is utilitarian.

Members of the blind and visually impaired community rely heavily on tactile graphics (or

tangible graphics) – informational displays that are made in relief to be touched [119] – to under-

stand geometric ideas in school textbooks, depict a story in children’s books, or conceptualize
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Figure 1.8: A characteristic watercolor painting (left) displays the gradients which are
distinct in this medium (right, closeup). [Painting ©Cate Parr., “Rooney Mara, Oscars in
Givenchy”, (cateparr.com)]

exhibits in museums. However, these images often fail to achieve their goals, in large part due to

the lack of understanding in how 3D shapes can be represented in 2D projections. Existing work

in tactile image design explored ways to improve these images, and many guidelines based on

these findings have been disseminated. The image in Figure 1.9 shows the transcription of the

visual image to the corresponding tactile, by manually following the Braille Authority of North

America (BANA) guidelines. This document includes a large number of rules. For example, it is

recommended that textures are used to indicate semantic areas, e.g., sepals have one texture and

petals have a different one. It is also suggested that a minimum number of images taken from

canonical viewpoints is used to convey the necessary information, e.g., the use of a single side

view of the flower. We take an entirely different approach in our design, introducing a curvature

indicative line texture, and a single multi-projection line drawing (Chapter 4). We fabricate

tactile images using microcapsule paper and a laser cutter. Taking inspiration from research

in cognitive science and findings from our own user studies, we improve upon the existing

guidelines [315] on the design of tactile images to increase shape understanding. Successful
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image design of 3D objects presupposes identification and combination of important information

in topology and geometry. The images differ significantly from photorealistic images, e.g., they

use raised lines and textures, instead of color variations, similar to Figure 1.7(b). Finally, we

develop and implement a user study in order to test the images.

(a) Visual image (b) Tactile image

Figure 1.9: Graphic designers use their experience and existing extensive guidelines to
transcribe a visual image (a) to a tactile image (b), as seen here. [©Braille Authority of
North America, Guidelines and Standards for Tactile Graphics (2010), (bana.org)]
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2
Related Work

Works in computational fabrication [302] provide anyone the means to both achieve precisely

designed artifacts by customizing object properties and express creativity [50] through com-

puter programming. While machines have been used to customize object properties such as

levitation [291, 312], mechanics [187], shape, volume, and stiffness [319, 320], among oth-

ers [157, 284, 299, 354, 418, 419, 434], another avenue of research in computational fabrication

focuses on the creative aspect of fabrication and has allowed users to customize and stylize the

design. Examples of stylized design are shown in Figure 2.1, with the input in the top row used

to design and fabricate the artifact in the bottom row. Stylized fabrication involves a variety of

materials, artifacts, and production techniques, including 2D fabrication of laser cut wooden

portraits (Figure 2.1(a)), 2.1D or 2.5D CNC milled relief paintings (Figure 2.1(b)), or 3D bun-

nies knitted from yarn (Figure 2.1(c)). While 3D is commonly known, 2.1D refers to discretized

bas-reliefs, layered depth diagrams, or flat layered bas-relief, and 2.5D refers to bas-reliefs [347].

All of these works are heterogeneous, e.g. they process different materials, they follow different

fabrication techniques, or they produce different artifacts. However, at the same time, they are

all stylized fabrication works because they create stylized versions of the given input.

This variety of materials includes yarn, paper, leather, metal, plastic, resin, and wires [214,

252,255,305,406,456]. Materials can be man-made (e.g., plastic in Figure 2.1(b)) or minimally

processed natural materials (e.g., wood in Figure 2.1(a)). They can be recyclable (e.g., cotton

yarn), reusable (e.g., leather), or neither (e.g., majority of resins). For environmental reasons
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materials of this first category are preferable, but in many cases the material selection is dictated

by the fabricated artifact.

These artifacts cover different tasks, e.g., soft robots [49] and 3D puzzles [258] used as

toys, wire sculptures [292] used as decor, and furniture [21, 251] used in readying an area for

occupancy. One way to group the artifacts is by the dimensionality of the output. For example,

the wooden portrait in Figure 2.1(a) is 2D, the relief painting in Figure 2.1(b) is 2.1D, and the

yarn bunny in Figure 2.1(c) is 3D. Another category that is not present is 2.5D. Another way

to group the task into categories is by defining a spectrum between utilitarian and artistic. For

example, in the above Figures, the first is the most artistic since it is meant to be admired for its

aesthetic quality, the second the most utilitarian since it is meant to be used as a tool for painting

exploration by the blind, while the third lies somewhere in the middle, since it could potentially

be used for garments, which are functional items.

A third categorization comes from the fabrication process. 3D fabrication is often used to

create 3D artifacts. Commonly used approaches are: 3D printers [56,115,376,381], robots [251],

CNC milling [482], and casting [26, 385]. We can also include the knitting machine in this

category, which built the bunny in Figure 2.1(c). However, researchers have also used 2D

fabrication to make higher-dimensionality shapes [41, 91, 159, 208, 214, 215, 273, 303, 332, 393,

417, 427, 433, 434], or to replicate and transfer image properties on 3D shapes [32, 71, 84, 221,

228, 323, 324, 348, 364]. One example that uses 2D fabrication to design a 2.1D image can be

seen in Figure 2.1(b). More rarely, 3D fabrication has also been used for the making of lower

dimensional output such as wire jewelry [412], or images [180]. Finally, more closely related to

this thesis research, is the 2D fabrication of 2D output, and particularly images similar to the

portrait in Figure 2.1(a).

This section discusses traditional and computational techniques to design and fabricate

images. The benefit of computational approaches, as discussed in Chapter 1, is allowing non-

experts access to different design spaces, which I showcase in this thesis by presenting two

techniques for the computational design and fabrication of non-photorealistic images. Here,

fabrication techniques of images are briefly discussed, specifically painting, printing, and the

generation of tactile images. I will first discuss traditional fabrication, then computational
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(a) Wooden portrait [190] (b) Tactile painting [346] (c) Knitted bunny [306]

Figure 2.1: Stylized fabrication. (Top) input; (bottom) stylized output. This research area
includes different production techniques and artifacts, e.g., (a) laser cut 2D portraits
[Image Iseringhausen et al. [190] (2020), “Computational Parquetry”]; (b) 2.1D plastic
paintings [Reichinger et al. [346] (2011), “High-Quality Tactile Paintings”]; or (c) 3D
yarn bunnies [Narayanan et al. [306] (2019) “Visual Knitting Machine Programming”].
Input photographs: [Karl Joseph Stieler (1820), “Beethoven”, Beethoven-Haus, Bonn
(wikimedia.org)]; [Raphael, “Madonna in the Meadow”, Kunsthistorisches Museum,
Wien, Austria, (wikimedia.org)]; [Narayanan (2019), “Stanford bunny”]

design, and finally computational fabrication of images.

2.1 Traditional Methods for Creating Images

Painting [350] is one of the oldest visual arts in human history. Colored pigments are applied

on a surface with different methods, such as hands, brushes, and sprays. Artists have used
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different painting media such as oil and watercolor and have mastered different styles such as

expressionism, pointillism, and Baroque. In contrast to this type of pigment application which

is freeform, printing [142] came much later in human history and restricts pigment application

to predetermined flat surfaces. While printing techniques exist that allow artists to make unique

artistic pieces, such as monotype and monoprint, printing fulfilled the need to easily create

replicas of text and image using methods such as metal etching, rubber stamps, silk screen,

stencil, thermal, inkjet, and xerography. More recently, images have been constructed to be

touched rather than seen. Tactile images are defined as raised graphics that are felt by hand and

have been made manually with a variety of different craft materials, such as glue, yarn, wax,

and foil (Figure 2.3(a)).

The first project, detailed in Chapter 3, builds upon two well-established techniques in

watercolor painting and woodblock printing. The second project, detailed in Chapter 4 describes

a novel way to design tactile illustrations.

2.1.1 Watercolor Paintings

Compared to other painting techniques, watercolor [444] stands out by its use of pigments

that are suspended in water. This enables characteristic visual effects based on the flow of

the pigments in the water and on the diffusion of the water on the paper (Figure 1.8). One

way painters control the flow of water is with masking fluid, a paint-like liquid that stops the

water flow. Artists also use pigment diffusion to create color gradients. They brush a thick

layer of water on the paper and deposit paint of different colors at different locations. The

progressive diffusion of the pigments in water creates a smooth color gradation and, at the same

time, produces subtle patterns due to the interplay with the paper. The project in Chapter 3 is

inspired by these two techniques, and describes a systematic approach for deciding where to put

masking fluid and for creating color gradients using water and pigment diffusion.

Watercolor painting follows a subtractive color model, similar to standard CMYK print-

ing. Watercolor painting uses freeform strokes and varies the concentration of paint in water

to achieve different transparency levels and colors. Unlike standard printing that relies on
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halftoning to generate a large spectrum of colors from a small set of inks, in this project the

inks are continuously mixed using water diffusion, which also generates the gradient patterns

characteristic of watercolor.

2.1.2 Woodblock Prints

The technique of woodblock printing originated from East Asia as a form of relief printing [72]

and has been used for well-known pieces like The Great Wave off Kanagawa by Hokusai,

which has been replicated by many artists, including by David Bull (Figure 2.2(d)). The artist

carves the negative of the desired image (Figure 2.2(a)) on the surface of a flat piece of wood

called a woodblock (Figure 2.2(b)). Ink is then applied to the raised area and the woodblock is

pressed on a paper canvas (Figure 2.2(c)). The ink used in the traditional East Asia technique

is water-based, while western woodblock printing inks are often oil-based. The work in this

project builds upon the former and extends it to generate watercolor prints. This work proposes

a computational approach to the design of the woodblocks and describes how to generate color

gradients using water diffusion instead of painting them manually on the woodblocks as done

traditionally.

Woodblock printing, similar to watercolor painting, uses different concentrations of paint

in water to achieve different transparency. However, it does not allow for the pigments to

flow in water; instead, rice paste is used to help pigment attach to the paper. Woodblocks also

differ from painting in that the final application of colors on the paper surface is not free but

predetermined by the woodblock geometry, which allows for easier reproducibility of the image.

Also, in contrast to standard printing, which uses halftoning, woodblock printing uses freeform

strokes on the woodblocks to create color gradations.

2.1.3 Tactile Images

One of the many applications of printing is to fabricate 2D tactile images. One way to create

tactile images on a paper is using a standard inkjet printer. A black and white image is printed

on a piece of a special type of paper, called microcapsule, which later, using light, expands from
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(a) Single colored image (b) Carving the woodblock (c) Single colored print

(d) Final print

Figure 2.2: An example of the traditional woodblock printing process. First, the negative
of a single colored image (a) is carved on a flat wood surface (woodblock) (b). Next,
ink is applied on the woodblock before is pressed on a paper with the baren (c). The
final print is a succession of prints from many woodblocks (d). [©David Bull (2015),
(patreon.com/mokuhankan) and (mokuhankan.com)]

the heat in areas where the black ink is placed. Tactile graphics [119] are currently made using

microcapsule (swell) paper using infrared heater machines [238], and plastic using vacuum-

forming (e.g., Figure 2.3(d)), 3D printing [210, 391, 432], or milling. However, images made

with thermoform plastic or microcapsule paper are static. Therefore, to design reconfigurable

images, another technology is being developed, namely Braille displays made of pins [317].
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Braille displays have drawn considerable attention, but still suffer from low resolution. In

addition to this technology, another innovative tool are sketchpads, such as inTACT [80], that

allow the blind to be the “designers” of graphics.

Tactile graphics can also be designed by artists [304,343], but are most often made by expert

designers in a time consuming process involving identification and application of principles from

existing guidelines (e.g., Braille Authority of North America [315]). Rules relate to the use of

points, lines, textures, and labels, as well as clutter avoidance, e.g., by elimination, simplification,

or separation of graphical elements. However, previous studies have still shown poor 3D shape

perception from traditional 2D tactile diagrams. Similar to our formative study (Section 4.2.2),

Klatzky et al. [212] cite success rates at the level of 30% for identifying everyday objects, with

some improvement observed for textured images compared to outline images [409]. Thompson

and Chronicle [410] introduced the TexyForm system and discuss the need for re-evaluation

of design methods. The project in Chapter 4 aims to improve the perception of 3D objects by

introducing a new approach that automates the design of tactile illustrations.

2.2 Computational Design of 2D Images

While in the previous section, manual techniques for the design of images were discussed, in

this section, computational techniques for the design of images are covered.

2.2.1 Non-Photorealistic Images

Non-photorealistic images are images that do not “attempt to synthesize the field of light

intensities” [133] and are extensively used in modern art, technical, and artistic illustrations in

design and visualization, e.g., [39, 167, 285].

Artists, crafters, and scientists have extensively used strategies such as simplification,

abstraction, and distortion on their designs to create emotional responses in viewers, or to

present an idea more clearly. This can be seen from the use of multiple perspectives in the

mathematically-inspired woodcuts of Escher [17], the colorful urgent strokes in the paintings

of Vincent van Gogh [19], and the simplified Tin-tin of Hergé [18], in which artists create
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(a) Craft materials (b) Plastic

(c) Paper (d) Plastic

Figure 2.3: Examples of tactile images made with a variety of different materials: a
map of Africa (a), an art exhibit (b), a picture (c), and a map (d). [(2020) (wikime-
dia.org)]; [©Paul Bartlett Ré, “A book and two traveling exhibits for the blind and
sighted”, (paulre.org)]; [M. Kunz (1902), ©Perkins school for the blind archives, Wa-
tertown, MA, USA (perkins.org)] [American Printing House for the Blind (2004), “World
Maps” (aph.org)]

emotions and tell a story; to the minimalistic human figure sketches for the garments of

Gianfranco Ferré [14], the angular design of Alfa Romeo by Marcello Gandini [16,139], and the

technical designs for the machines of Nicolas Tesla [144], which crafters use to understand and

fabricate objects; to, finally, the planar and schematic pictures of floating bodies in Archimedes

Palimpsest [308, 309], the statistically informed “pie charts” of William Playfair [389], and

the simplified illustration of DNA from Crick and Watson [441], which are used to clarify or

support an idea.
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Figure 2.4: Stylized fabrication of non-photorealistic images. The input can be a 3D
geometry or a 2D image. The task for either input can be utilitarian or aesthetic. Finally,
the image can be distinguished in terms of fabrication technique to 2D, 2.5D, and 3D.

Inspired by this type of non-realistic depiction, the discipline of computer graphics developed

the field of non-photorealistic rendering (or expressive rendering) in the 1990s [147, 229].

Non-photorealistic rendering [362], used in technical or artistic illustrations in design and

visualization [59, 61, 88, 104, 129, 154, 167, 167, 217, 226, 250, 270, 276, 338, 375, 436, 453–

455, 467], diverges from reality by modifying the appearance of colors, lines, shading, and

views presented [69, 79, 92, 107, 149, 357]. Non-photorealistic rendering is also referred to as

stylization. The input is either an image or an object [102] (Figure 2.4 Input). Following, I

discuss work relevant to non-photorealistic image creation that is of interest for the projects in

this thesis. Moreover, extensive reviews of the developed techniques [147, 175, 229, 394] exist.

2.2.2 Paintings

Related to paintings, there are many works on non-photorealistic rendering that generate stylized

compositions that reflect artistic intent [58,59,104,108,113,143,202,226,259,267,316,328,360,

363, 371, 375, 436, 450]. This type of rendering is referred to as artistic rendering (or painterly

rendering), and as artistic stylization [102, 225] (Figure 2.4 Design and Task).

Many of these works can be applied to any type of image input and can be adapted to design

aesthetically different images only by changing parameters of the underlying algorithms [158,
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160, 174, 363], or by providing examples of the desired style [46, 131, 262, 266]. However, this

is not always the case. Works in this field have also focused on rendering specific styles on

a case-by-case basis by inferring direct rules for its rendering [253, 316, 462]. To allow for

changes in the aesthetic style, e.g., level of abstraction, works in this research area are often

semi-automatic, similar to the watercolor project in this thesis. One such work is Winkenbach

and Salesin [451] where the user specifies where detail should appear in the drawing, in which

a 3D input is rendered using black strokes (Figure 2.5). In other cases (e.g., [359]) the input

is 2D, similar to the watercolor project in this thesis. One work of particular interest focuses

on painting plants [265], in which the output is based not only on images but also on 3D

geometric information, and the plants are watercolorized with smooth gradients, similar to

our work in watercolors. Going beyond static images, painterly rendering has been used in

animation [60, 61, 167, 264, 314]. In the first project of this thesis, instead of creating a virtual

watercolorization, we aim to fabricate an artistic version of the input photograph.

(a) Input & annotation [451] (b) Texture [451] (c) Output [451]

Figure 2.5: The pipelines for non-photorealistic images are often semi-automatic. Here,
the input 3D model (a) is annotated with lines to indicate where texture (b) appears in the
output (c). [Winkenbach and Salesin [451] (1994), “Computer-Generated Pen-and-Ink
Illustration”, ACM]

Techniques also allow for “deleting” mistakes in already painted areas. For example, strokes

can be modified or removed [369]. These techniques, usual for rendering, are obviously not yet

realized for computational fabrication. Works have tried to circumvent these issues by using

diluted paints and a large number of robotic painted strokes, which, due to the inaccuracy of

the results, are guided by visual feedback. This is expensive in terms of time and machinery.

For the watercolor project, the “painting” pipeline does not require heavy machinery, and both

dense and diluted paints are carefully placed using woodblocks.
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Projects about simulation of different painting media, including watercolor, create virtual

paintings, investigate the properties of the media, or provide virtual painting tools for non-

experts [43,44,86,89,94,118,204,261,423]. In the watercolor project, then, we try to understand

the properties of the media we use in order to use them efficiently.

These types of techniques have allowed for the more “formal” and accurate design of

images (Figure 2.6(a)). However, in some cases, due to physical manipulation or authenticity

requirements, the images also need to be fabricated (Figure 2.6(b)). Select techniques that

computationally design and fabricate images are discussed in the following section.

(a) Image design [245] (b) Image fabrication [245]

Figure 2.6: Examples of computational design (a), and computational fabrication (b)
of stylized images for the same input. [Lindemeier [245] (2018), “e-David: Non-
Photorealistic Rendering using a Robot and Visual Feedback”]

2.3 Computational Fabrication of 2D images

Image fabrication works (similar to stylized fabrication works, Section 2) can be categorized in

terms of the production technique (Figure 2.4 Fabrication), in addition to the input (Section 2.2.1)

and the task (Sections 2.2.2, 2.4) as we saw earlier. Additional related works include 3D

fabrication techniques that display 2D images, such as wire-sculptures that are meant to be

viewed from a discrete set of directions and perceived as 2D images [180] and 3D volumes

that cast different shadows in different directions [293]. More relevant to our work is 2.5D- or

2D-fabrication of transformable 2D-images. Some examples are images that encode multiple

images [36, 325], that cast different shadows when lit from different directions [47], and
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images that transform when viewed from different directions [330] or under different light

conditions [30].

Techniques have also been explored for the fabrication of 2D images that remain unchanged.

In some of the works, fabricated forms need to interact with light to display images. One category

are images that result from shadows of a surface [28], or from shadows to a surface [288, 480].

A different type of image that makes use of interactions with the light is caustic images,

which include images of controlled light refraction [269, 326, 368, 472] and controlled light

reflection [211, 447]. This type of work falls under the category of inverse design [327].

Other works in fabrication of 2D-images try to stylize or provide user interfaces using specific

material. Wood pieces have been used in mechanical art [355], as well as in the computational

design of parquetry, which is a traditional type of image made of woods [190]. Images made of

strings [52], paper-collage [456], Lego bricks [222], resin sticks [471], strawberry jam [481],

and traditional painting media, such as oil paints [132] and pens [237], show the diversity of

materials that has already been explored regarding how to fabricate computationally.

2.3.1 Paintings

Various techniques have been developed for the computational fabrication of paintings. Re-

searchers have focused on reproducing existing paintings by 3D printing them [378]. Also, they

have used a robotic arm to paint with acrylic ink, oil-paint, and pen strokes for a given input

image [75, 112, 247, 248, 413, 415, 461]. Galea at al. [138] created stylized black and white

stippling images from a given photograph with acrylic ink applied by drones. Iarussi et al. [183]

presented a guidance drawing tool. Yao et al. [465] focused on robot-controlled Japanese brush

painting techniques specific to bamboo imagery. Prevost et al. [337] proposed a system for

painting large-scale images using spray paint based on a photograph. Our technique is on a

smaller scale and aims to create effects specific to watercolors such as diffusion between colors.

Flagg et al. [132] propose another system of guided painting, this time for oil painting, which

incorporates a color mixing model. Their system is intended as a learning tool and its results

rely upon the painter. Instead, we propose a technique that produces results purely contingent
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upon the procedure itself. Also, as discussed in the introduction, some of the works do not

create a painting based on a given input, e.g., Cohen [100], but composite images, instead of

that, we use the watercolor medium to stylize the input photograph, similar to the works of

researchers with other painting media, e.g., Lindemeier et al. [247].

2.3.2 Prints

Printing and pressing techniques have also been used in computational fabrication research for

broader applications. Standard printers have been used to print ink in a way that controls the

specular highlights [274], which results in images with different shadows when lit from different

directions, or color inks printed on transparency film to allow for colored holograms [345].

They also have been used in controlling the reflection of images, for example metallic inks to

allow for different reflectance [172, 283], or printing color images on silver paper that display

different images in different viewing modes [335]. (For a similar result, UV-printers have been

used [358].) Fluorescent inks have also been printed to become visible only when lighted with

UV and allow for the reproduction of the original color hues of the input image [173]. More

recently, 3D printers have also been used for color reproduction [32, 122].

In addition to modern printers, other techniques have also been used to transfer images.

Hydrographic printing has been used to physically map the texture on to free-form 3D ob-

jects [324, 479]. Similarly, thermoforming transfers pre-distorted images onto plastic sheets,

which are then deformed into 3D shapes [364]. In contrast to these techniques, which aim to

accurately transfer a given image onto a three-dimensional surface, we focus on transferring

a specific pigment type, that is watercolor pigments, to achieve characteristic visual affects.

While techniques such as hydrographic and thermoforming have material limitations that cannot

be applied directly to watercolor pigments, woodblock printing has traditionally been used to

apply water-dilutable pigments. Related to woodblock printing, graphics researchers [405] have

looked into how a given woodblock printed image could design a set of woodblocks that would

reproduce it. The suitability of using woodblocks to apply watercolors is because wood can

attract water, and therefore, pigments diluted in water, in contrast to plastic surfaces. However,
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while in traditional woodblock printing color gradients have to manually be painted on the

surface of the woodblocks (e.g., black sky gradient in Figure 2.2(d)) and then transferred on

the paper, we use the diffusion caused by the water itself to create approximate color gradients

without needing to paint them.

2.4 Tactile Images

Visual images, as we show previously, often exist as virtual renditions and do not need to be

materialized. In contrast, tactile images are always made with real materials, since otherwise

they cannot serve their utilitarian task. Related to tactile images is rendering for illustrative

“visualization” [232, 428], which includes technical illustrations and abstracted drawings that

clearly convey information (Figure 2.4 Design and Task). While a subset of works inputs images,

another subset of works inputs 3D objects. Relevant works focus on enhancing images e.g.,

modifying sharpness for vision problems [182, 297] and investigating how well line drawings

represent 3D shapes [101], for more details [45]. In general, tactile images are self-explanatory

without the use of colors, even though in certain cases distinct colors (e.g., yellow and red) are

present to annotate information for individuals with low vision. Tactile images can be visualized

as greyscale images, with black indicating raised areas of the relief and white indicating non-

raised surfaces (Figure 1.9(b)). Therefore, graphics research that uses color shades to convey

information (e.g., [169, 349]) is not of relevance in our project. On the other hand, textures

are key features for their design and lines remain of great importance, similar to their visual

counterparts. Another key element in conveying shape information in rendering is camera

placement: their viewing directions, their type of projections, their number and how they are

placed and composited together.

When representing 3D shapes in 2D media, choice of camera projections vary significantly

depending on the case. For example, orthographic and oblique projections are used widely in

CAD and technical drawing design [87, 219], while linear convergent perspective projection

is found more commonly, e.g., in video games and film. Linear divergent perspective is used

in artistic drawing [179, 196], and non-linear perspective (e.g., curvilinear perspective [395])
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projection characterizes wide angle photography and some artistic stylizations, e.g., Escher [69].

Past work in multi-projection rendering [23, 469] shows how images from different camera

viewpoints can be combined into a single image. In the tactile images project, we draw from the

multi-projection approach of Agrawala et al. [23] and extend their work by using local cameras

for segmented parts within the same input 3D shape, the goal of which is to fabricate a tactile

illustration with improved shape understanding by individuals with blindness.

Extensive work has been done in computer graphics on visual line drawings that improve

how shape and topology are conveyed [155], e.g., using suggestive contours [106], emulating

pen strokes on parametric surfaces [452], and using silhouettes and hatching [177,200,336,473].

Studies show the effectiveness of these techniques in depicting shape [101]. However, these

methods were designed for visual perception, and properties such as shading due to illumination

are not relevant to tactile perception. Further, the cutaneous system for touch is limited in

spatial resolution compared to the visual system [53, 233]. High-frequency details are lost when

perceiving haptically raised lines. Way and Barner [443] identified size restrictions for the low

resolution sense of touch which are enforced in most guidelines for tactile images [166,287,315].

Geometric modifications can provide stylization [254], or help visualize internal structure

with approaches such as cutaways [242], splitting objects [191], or using deformations [286].

Geometric modifications also help display the global shape of forms, by abstracting the geome-

try [289], or improving visibility in exploded diagrams [239, 404] (e.g., complex mechanical

assemblies). Non-geometric modifications include material changes, such as the use of trans-

parency and ghosting [114]. While most previous works for the design of tactile images do not

modify the geometry of a shape, our work geometrically modifies the shape, i.e., uses geometry

processing to extract annotate on the image.

New ideas for the production of tactile graphics covers a range of applications such as

maps [67, 152, 397], scientific diagrams [67, 194], computer user interfaces [238], children’s

books [209, 210, 210, 391, 392, 432], and portraits [438]. A general survey on relevant tools is

written by Levesque [236]. Efforts have been made to provide blind individuals with tools for the

design and fabrication of tactile graphics [151, 153, 223, 398]. Researchers have also enhanced

tactile tools beyond touch, using air [384], force feedback [66, 342, 476], and sound [65, 134],
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and have focused on automation for the design of relief paintings [78, 346] and math [70],

among other images (Paneels and Roberts have written a review [321]).

Automatic tactile illustration generation has been studied for 2D input images, resulting in

improved edge extraction [171], filters capable of removing details too small to be perceived by

touch [443], addition of segmentation [128, 230, 440], and tool-specific fabrication, i.e., using

a Braille printer [220]. In contrast, our proposed method operates on 3D geometric input and

introduces a new non-photorealistic rendering procedure. We were inspired by two lines of

work that explored non-standard illustration techniques:

• First, the procedure of “unfolding” or “flattening” 3D shapes to obtain 2D depictions [224],

based on drawings made by blind individuals. We expand on this idea with a multi-

projection strategy for general 3D objects so that flattened illustrations can be created

automatically. Our approach considers viewpoint selection, known to play a key role in

3D shape recognition [126].

• Second, we expand on the use of line curvature and orientation, which have been shown

to be salient features [181, 466], used successfully in 2D tactile Braille and Moon alpha-

bets [298]. Thompson et al. [411] studied the use of curvature lines in shape perception.

However, examples were constructed case by case and did not provide a system for

application on novel objects.

We develop a systematic approach to the design of tactile illustrations.

2.5 Summary

Computational techniques for stylized 2D fabrication of images is an area of computer graphics

currently in development. These techniques aim to create an authentic artistic image, or to

convey information more clearly. The fabricated images are stylized either to display common

elements of artistic composition for the given style, media, or artist or to serve a utilitarian task.

Because of the dependence of the fabrication process on the physical materials, techniques that

fall under this umbrella are time intensive. Material appearance and handling need to be taken
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into account and the design process needs to be tuned (i.e., made aware) for the corresponding

fabrication task.

Our main contribution over previous techniques is that we aim to find solutions to design

spaces not previously explored in computational fabrication. These designs spaces – watercol-

orized and tactile images for shape understanding – are detailed in the next chapters.
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It may not be entirely obvious to people in the engineering disciplines,

but in the art-making game we do not think about finding the “best”

solution to a problem; we think about generating the widest possible

range of excellent solutions.

Harold Cohen, 2006

3
Watercolor Prints

Watercolor is a popular form of painting that mixes delicate color gradients with finely detailed

contours and diffusion patterns that are immediately recognizable. This unique, abstract look

is created by diluting the pigment in water and using a brush to deposit the paint on absorbent

paper. Several complex physical phenomena occur during the painting process such as the

diffusion of the pigments through the wet paper and the progressive absorption and drying of

the water, which combined together generate the visual features characteristic of watercolor.

Unfortunately, mastering this technique is challenging and typically out of reach of most people.

Further, even for a trained artist, producing several copies of a painting is a tedious task because

one needs to manually reproduce all the steps.

Several options have been proposed to overcome this challenge. For instance, one can make

(a) Input photograph (b) Laser cut woodblocks (c) Resulting watercolor print

Figure 3.1: A Marilyn Monroe photograph was used as an input to our pipeline (a), with
our hybrid fabrication process constituted by watercolor paint and laser cut woodblocks
(b). We created the final painting (c) through layered prints of the individual woodblocks.
[Photograph by Milton H. Greene ©(2018) Joshua Greene (archiveimages.com)]
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copies by scanning an actual painting and using a standard 2D printer. However, this approach

creates identical replicas that have lost the characteristic uniqueness of actual paintings. Further,

one still has to create the first painting using the standard process. Another approach is to rely

on watercolor simulation software, which brings the convenience and controllability of digital

authoring to the creation process but sacrifices its physicality. The latter may limit the ability

to reproduce all the features of watercolor and, even if one can introduce variation through

randomization, each copy is unique only insofar as one does not print each piece more than once.

Closer to our work, lithography is a process where the artist first creates an etched stone that is

later used to print several copies. Since the print process is manual, each print is subtly different

from the others, thereby preserving the unique nature of the work. However, lithography does

not apply to watercolor that is the focus of our paper.

In this paper, we propose a new solution in this design space. We enable users to create

watercolor prints using a photograph and minimal guidance as input. We first introduce an image

analysis technique to determine the main color regions of the image and their level of sharpness.

We design this step so that users can easily provide guidance if needed, e.g., to control the level

of abstraction of the final print. Based on these data, we then fabricate woodblocks and define

the paints and the presence of water on each of them. Our use of woodblocks replaces brushes

in the traditional watercolor painting technique, providing a higher level of automation. Finally,

we describe a protocol to realize the final print. In our prototype, this last printing step is done

by the users themselves but it is fully specified, i.e., it does not involve subjective judgment

during the process, and we envision that it could be performed by a robot in the future. We

provide a variety of examples created with our approach to demonstrate that it successfully

reproduces the characteristic look of watercolor without requiring any painting skills from the

users. Recognizable characteristics of watercolor paintings are present in our results: the paper

texture, the variability of the thicknesses on the deposited pigments, and the broad gamut of the

produced colors.
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3.1 Background

In this project, we focus on watercolor paintings, which is a particular artistic style of visual

images. In visual images, we can access information that we could not sense without our

sight, including color, variation in color intensity, and access to distant information. Also,

when viewing visual images, we can accurately and quickly extract edges and, with their help,

semantic boundaries. Artists have used this type of information to convey form and emotion

in their paintings. In this project, we also extract this type of information to computationally

design watercolorized versions of a given photograph. Before explaining our process, we discuss

graphics research that has taken this information into consideration.

3.1.1 Color

Color is a salient characteristic which we use to visually distinguish objects [53]. Artists have

used color to indicate different objects and to provoke emotions. To achieve high aesthetic

quality, artists carefully select the number and the combination of colors they use. Too many

colors, even though they might result in a more accurate photorealistic image, might also create

a less artistic, less harmonic, and less aesthetically pleasing result.

Color and color perception have been used in painterly rendering [108, 316] and researched

in computer graphics. The most relevant type of work is the techniques that have been developed

to extract palettes of representative colors and segment the image in several uniformly colored

regions. While Morse et al. [301] select colors based on color hues, saturations, and lightness

values, O’Donovan et al. [313] use a database which includes rated color themes, and Lin et

al. [243] create color palettes based on a data set of human-extracted color themes. We use the

palette extraction algorithm of Chang et al. [81], which in contrast to other techniques, does

not rely on existing color databases and is a simple algorithm to implement, which extracts

a palette based on pixel color clustering. Palette extraction for painterly rendering has been

looked into prior to our work (e.g., [264]), especially for the case of watercolor, for which

traditional painting techniques use a limited number of colors. Color palettes have been used to

recolor watercolor images [24]. Color mixing based on limited color-palettes has been recently
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examined in fabrication but has not been researched for watercolors [246].

3.1.2 Variation on Color Intensity

Variation of intensity, similar to shading in painting [213, 341], helps shape understanding. One

example of this phenomenon is that two-colored images have been shown to fail in recognition

tasks, where gray-scale images succeed [53]. Artists have used shading, i.e., gradual color

intensity variations, using media such as pen, pencil, and watercolor, to display different

materials, shadows, and 3-dimensional forms on the 2-dimensional space of a flat piece of paper.

In this subsection, we focus on how we capture the gradual variation of color intensity on an

image for the purpose or reproducing it with watercolors.

While computation of gradients has been used in graphics, and especially relevant to our

work in painterly rendering, for example to place outlines in line drawings [201], to decide size

of brush-strokes [263], or to represent gray-scale gradients using lines and visual feedback [415],

identifying where gradual color variations occur (smooth gradients) in order to fabricate them,

has not been addressed in the field of graphics. In a similar line of work, Luft and Deussen [265],

noticing that smooth color transitions were desirable for watercolors, proposed a way to design

plants with smooth gradients by considering the underlying 3D geometry. Similar observations

were made for general purpose scenes [60]. Our project adopted and extended the following

three techniques in order to identify where the places of gradual color variations occur on an

image. One of these techniques, defocus estimation, was used to identify regions of constant

blurriness in an image [127, 478, 485]. Depending on how blurry or out of focus these regions

are determines whether they are shaded or not; that is, they are shaded as areas of variation

of gradual color intensity are identified (i.e., smooth region). The second technique is the

identification of relatively higher or lower color intensity areas within a uniformly colored

smooth region. These areas can be found using image morphological analysis, such as the

Valued Regional Maxima Image Filter provided by ITK [7] used for medical imaging, and are

further expanded using our technique explained in Appendix B.1. The third technique is the

constant overlaps we define for the woodblocks in order to create smooth transitions between
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different colors.

3.1.3 Edges

Image edges, discontinuities on the color intensities of an image, help people understand object

boundaries and provide information about shapes [31]. Artists have displayed edges as lines or

color discontinuities in their paintings and drawings.

Similarly, many computer image processing techniques have used [108] and looked into

how to extract edges from images. A commonly used technique is the Canny edge detector [76],

which involves computations based on gray-scale image gradients. Techniques of edge extraction

can approximate the gradient, matching predefined templates, or fit local intensities with edge

models according to Ballard and Brown [35]. In addition to these, recent techniques have

employed neural networks [121] for edge computation. Due to its existence in many graphic

packages, we also use the Canny edge detector, which gives satisfactory results for the purpose

of our work.

3.1.4 Boundaries

Along with the use of the two perceptually lower level characteristics discussed previously, color

and edges, a higher level characteristic relates to semantic regions, enclosed within what are

called boundaries, and helps identify objects on a higher level. Boundaries are created where

edges occur and signal semantically different parts. Watercolors introduce edges at the painted

boundaries as they dry. Therefore, artists, when they do not want to introduce edges within a

semantic area, finish painting a semantic area quickly before they move to the next area.

Separation of images into semantic areas has previously been used in painterly render-

ing [111, 247, 474], and has also been investigated in graphics. Some of the segmentation

techniques use a seed as input which later grows the regions, taking into consideration local or

global characteristics. One example is the work [218], in which a global model defined on a

graph of image pixels propagates the regions to the entire image using Bayesian probabilities.

This is also the algorithm that we use in our work. More recent techniques have resolved the
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need of adding a user given scribble (e.g., [25]). An extensive review of existing techniques can

be found in the survey of Vantaram et al. [425].
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3.1.5 Overview

The input to our technique is a digital image, Ip, and user-provided annotations, Is, of the

process. We designed a pipeline having in mind the abstraction of watercolor paintings. First,

we analyze the input image to determine how each region should be represented in the final

print. We compute a palette composed of a few paint colors and determine where each color

will be applied. We also estimate the local smoothness of the image and use it to locate where

to put water. We combine these pieces of information to define a set of regions where we will

place paint or masking fluid. We give the shape of these regions as input to the laser cutter to

carve the woodblocks. Finally, we use these blocks to apply the paints and masking fluid onto

white paper. While this step is manual, it is fully deterministic and could be performed by a

robot. However, the design of such robot is beyond the scope of our work. Instead, we describe

a step by step procedure, in which no subjective evaluation is required at any point

3.2 Image Analysis

This section describes our image analysis methodology to generate the components of our

watercolor prints. We later use the output to fabricate the woodblocks for printing.

3.2.1 Overview of Our Image Analysis Pipeline

The input to our technique is a digital image, Ip, and user-provided annotations, Is, indicating

the main semantic regions that the user would like the final print to retain. For example, in

Figure 3.2(a), the user selects distinct regions for the background, hair, skin, eyes and lips.

Using these inputs, the pipeline of our image processing algorithm consists of the following

steps (Figure 3.2):

1. Decomposition of the input image into a small set of color regions that we use to determine

the color of the paint at each location.

2. Estimation of the local smoothness of the input image.
1Photograph by Milton H. Greene ©2018 Joshua Greene www.archiveimages.com
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(a) k = 2 (b) k = 3 (c) k = 4 (d) k = 5

Figure 3.3: The user can control the level of abstraction by varying the number of colors,
k, in the color palette extraction.

3. Decomposition of the image into semantic regions based on the user’s annotation. We use

this information and the local smoothness to locate where to put water.

4. Detailed analysis of the variations of color and intensity in the water regions, which we

use to generate watercolor diffusion patterns that approximate the content of the input

image.

5. Optional: characterization of the fine details not represented by the previous step so that

we can print them over the diffusion areas once the water has dried.

Throughout this process, we create maps that store intermediate data, e.g., a color map for

the representation with a small color palette and a binary water map to indicate where to put

water. The output of our image analysis is a set of 2D shapes in the image plane describing the

woodblocks that we will use for creating the print. We will send these shapes to a laser cutter to

fabricate the woodblocks.

3.2.2 Color Map - Mc

While watercolor exhibits a spectrum of colors, they are all produced with a small set of paints

– the color diversity comes from mixing, diffusion, and dilution. The first stage of our image

analysis pipeline determines this small set of paint colors, the color palette. We use the palette

extraction algorithm of Chang et al. [81] which takes the photograph bitmap file and the desired

number k of colors in the palette as input, and outputs the actual palette colors. This variant of

the k-means algorithm uses an acceleration data structure, where k is the number of colors in

the output palette. In our context, the number of colors k controls the level of abstraction of the
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final watercolor print. A low k value represents the input image with few colors and generates a

more abstract output, whereas a high k value preserves more details. We typically set k between

3 and 5 (Figure 3.3). Next, we compute the color map Mc by assigning each pixel to its closest

color in the palette in the CIE-Lab color space. This map defines the color of the paint at each

location of the final print. The next step is to determine where we will apply water.

3.2.3 Dry and Wet Areas

Now that we have computed the color of the paint at each point, we decide where to apply water

to create diffusion gradients. In “dry” areas, we use watercolor paint with a minimal amount of

water so that no diffusion occurs. This is the desired behavior for printing fine details like the

eyes of a portrait. In comparison, “wet” areas favor diffusion and are well suited for smooth

color gradients. Because of the diffusion process, controlling the output in these regions is more

challenging and we introduce a dedicated multi-step process for that purpose. In the rest of this

section, we first describe how we determine where to put water, then briefly discuss how we

handle the dry areas, and finally discuss in detail the more challenging case of the wet areas.

Where to Put Water

We wish to use water diffusion in smooth regions of the input. To do so, we first estimate a

smoothness map, Msm, that quantifies the local image smoothness and then describe how we

guide users to decide where to put water based on this information. We call the output of this

step the water map, Mw.

Smoothness Map – Msm We use the algorithm of Zhang et al. [478] to estimate the local

smoothness in the input image. This technique has been designed for characterizing defocus blur

and we found that it generalizes well to locate smooth regions in general, e.g., it successfully

identifies the Marilyn Monroe’s skin as smooth (Figure 3.2c, brighter values are for smoother

regions). The algorithm analyzes the gradients in the image and outputs a continuous sharpness

value at each pixel, we call this result the smoothness map Msm. We discuss the parameter

settings in the section about implementation details.
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For our application, we seek to convert these continuous values into binary ones that indicate

where to put water. This is a critical decision because the transition between a dry and a wet

region creates a visible edge that, if misplaced, generates unsightly results. We experimented

with options like per-pixel thresholding and superpixel-based thresholding, and found that they

do not prevent such unsightly edges. These early tests also suggested that the location of the

diffusion gradients is in part a subjective choice and that some degree of user controllability is

desirable. The next section describes our solution motivated by these observations.

Semantic Map – Ms To ensure that wet–dry edges appear at visually adequate locations,

we let the user define the meaningful regions of the input image, e.g., the sky and the trees

in a landscape, and later only allow dry–wet edges to appear between two such regions. In

the previous example, this guarantees that no edge can appear in the middle of the sky for

instance, but allows for an edge between the sky and the trees. For this purpose, we use the

DenseCRF algorithm [218]. This technique takes the input image and a set of user-provided

scribbles, one for each region they wish to define, and it returns a dense map where each pixel

is assigned to a region according to criteria like color similarity and image distance between

pixels. In our experiments, we found that regions representing semantic image elements such as

skin, eyes, and mouth for a portrait, or sky, trees, and ground for a landscape yields satisfying

results. Based on this observation, we call this output of the DenseCRF algorithm the semantic

map. We refer to the original article for the details of the algorithm and to Section 3.4.1 for our

parameter settings. Semantic image segmentation has also been incorporated in previous work

in rendering [483] and physical painting [249].

Water Map – Mw Using the semantic map, we next define a binary map that indicates where

to put water, the water map. To ensure that dry–wet edges only appear along semantic boundaries,

we assign a single smoothness value to each semantic region by averaging the smoothness map

Msm over each region. Without the Smoothness Map, there would be no indication on which

semantic regions to put water and users would have to provide this information. On complex

images, this may be a challenging task for novices. We let the users define the water map with
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a threshold on this per-region value. By varying the threshold, one can choose a look from a

sharp rendition with details everywhere to an abstract print composed mostly of water diffusion

gradients.

Dry Woodblocks

Now that we have computed the color and water maps, we define the shape of the woodblocks

that we will later fabricate with a laser cutter. We first discuss the “dry woodblocks,” that is, the

blocks that we will use to deposit paint on paper that is only lightly moistened (in comparison

to the areas where it is fully wet). We create one such block for each color of the color map by

computing the intersection between the corresponding color region and the inverse of the water

map (i.e., the dry regions).

Wet Woodblocks

In this section, we discuss the woodblocks that we will use on wet paper. These require more

sophistication because of the water diffusion. First, we create a masking woodblock by inverting

the water map Mw and adding edges (Section 3.2.3). We will use this block to apply masking

fluid on the regions that should remain dry. Then, we create woodblocks representing each

color in the color map. We first describe how to design the blocks to produce a smooth color

gradation and later refine this process to also handle brightness variations.

Color Woodblocks – Bwc In our early experiments, we created a wet block for each color by

intersecting the corresponding color region in Mc with the water map Mw. This applies paints of

different colors next to each other and, with water diffusion, creates a smooth transition between

them. However, the extent of this transition is limited. We tested different amounts of water

and paint, but the result never exhibited the large gradients typical of watercolor. We tried to

shrink the shape of the woodblocks before fabricating them. We hoped that this would leave a

gap between the colors that diffusion would fill, thereby creating larger gradients, but instead

this created gradients with a white band in their middle. The opposite solution succeeded. We

dilate the color regions of the color map with a disk of radius 1.75 mm, before computing the
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intersection with the water map. This creates areas where colors overlap, essentially introducing

an intermediate color between any two adjacent colors. Coupled with water diffusion, this

produces large smooth gradients. By varying the amount of dilation, the size of the overlap

changes, which in turn affects the extent of the gradient. The resulting color regions correspond

to Bwc as shown in Figure 3.2(h), the red areas indicate where the adjacent colors overlap. See

Figure 3.10 for a comparison of gradient effects.

Shading Woodblocks. Overlapping blocks allow us to create a smooth gradation between

two colors. We also observed that gradients in the input often exhibit an intensity variation,

i.e., they go from dark to bright to suggest shadows and highlights. To reproduce this effect,

we refine our woodblock design. First, we compute the block shape as previously described

using the water map (Section 3.2.3) and consider the corresponding image region in Ip. We

convert the image data to gray-scale and generate a grayscale map in the same way as we have

created the color map, i.e., using the k-means algorithm [81]. Since we operate within a region

of the color map, we seek a finer-grain decomposition and generate a larger number of clusters

for k=50 grayscale values. We call superpixels the groups of adjacent pixels with the same

grayscale value. First, we identify the brightest superpixels using non-maxima suppression, that

is, we select the superpixels that are brighter than all their adjacent superpixels. We modify

the block shape by removing these bright superpixels from it. As a consequence, these regions

will not receive paint directly and color pigments will only reach them in a diluted form via

diffusion, which will reveal more of the underlying white paper and create a brighter spot as

desired. These brightest superpixel regions are denoted by the checkerboard pattern in Bd in

Figure 3.2(j).

For the shadow regions, we identify a set of darkest superpixels using non-minima sup-

pression, on the gray-scale k-means map for k=30 gray-scale values and for each color block

using a procedure that we describe in Appendix B.1 we expand them. These shadow regions

correspond to the colored areas in Bm in Figure 3.2(i). We will use these blocks to apply a

darker shade of paint that will smoothly blend because of the water diffusion.
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Detail Woodblocks

So far, we have worked with large and medium sized superpixels, and have not captured fine

details. While it is common for watercolor imagery not to exhibit such details, artists sometimes

add them back using a fine brush. We provide a similar option. From dry areas, we allow users

to add details by extracting the edges of the input image using the Canny edge detector and

printing them on top of the color regions. For this purpose, we create a dedicated woodblock for

each color region and use it to apply a darker paint of the same color. Water areas exhibit even

less details because of the water diffusion. First, we add the Canny edges to the masking fluid

block to create discontinuities in the diffusion gradient, thereby making these edges visible in

the print. Also, the watercolor block expansion stops wherever an edge is present. Then, we

extract small image features. We use k-means clustering [81] on a gray-scale version of the

image for k=50 gray-scale values to create small image regions and we select the dark regions

using non-minima suppression. We create a woodblock with these small regions in addition to

the edges of the dry region and use it to apply a darker paint of the same color once the water

has dried.

3.3 Fabrication Method

In the previous section, we have computed the shape of the various woodblocks needed to create

the final print. We now explain how to fabricate the actual woodblocks and how to create the

print.

Woodblock Cut Pattern Given the image analysis output from Section 3.2, we translate the

output images (Figure 3.2(g)–(j)) into woodblock cut patterns that we send to a laser cutter

(Figure 3.4). The images indicate the carved regions in black. While a laser cutter can carve

arbitrary patterns [235], thin wood features are fragile and likely to break under the action of the

printing press that we use in the final stage. To prevent breakage, we shrink the carved regions

by 0.05 mm, to account for the laser spot radius of 0.05 mm.
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Figure 3.4: Images given as input to the laser cutter, corresponding to the woodblocks in
Figure 3.1.

Creating the Print We now describe how to use the woodblocks to create the final print. First,

we affix the paper onto a flat plywood board to ensure no distortion when we apply water to

the paper. Then, we apply the masking fluid using the corresponding woodblock, i.e., cover the

woodblock with the fluid, position the block on the paper, and press it against the paper. Once

the masking fluid is dry, we spray water on the paper and we print the wet color regions. Then

we spray water again to allow diffusion. Once the print is dry, we remove the masking fluid and

print the dry color regions and the details. The printing sequence is illustrated in Figure 3.5 and

we reference our equipment in the Implementation section.

Discussion: We observed that the order in which we print the wet color influences the final

result. The last color we apply tends to “dominate,” e.g., red over yellow gives a redder orange

than yellow over red. For consistency, in our experiments, we always applied the colors from

brightest to darkest.
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Figure 3.5: An example of our printing sequence. (a) We start by masking the
“dry”areas without color diffusion (white) and printing the “wet”colors with water dif-
fusion first. (b) We then remove the masking fluid and print the dry colors without water
diffusion. (c) Lastly we print the details blocks (minima and edges).

3.4 Implementation Details

We describe the implementation details of our algorithm and list materials and machinery used

for fabrication. Before we finalized them we looked into different other implementation and

fabrication ideas, some major can be found in Section 3.6.

3.4.1 Parameters of the Image Analysis

To promote a straightforward process in the image analysis stage, the parameters that the user

controls are limited to the threshold for the Water Map, the k number of colors in the Color

Map, and the Semantic annotation scribble.

For the k-means palette extraction algorithm of Chang et al. [81], we made modifications so

that dark colors are not discarded and shadows are not ignored. We use 10 bins for every color

channel.

We use the publicly available implementation [4] of the DenseCRF algorithm [218]. In all

our examples, we set the weight and the standard deviation for the smoothness kernel (color

independent terms) as w(2) = 3 (unitless) and θγ = 3 pixels, respectively. For the appearance

kernel (color dependent terms) the weight, standard deviation and color standard deviation are:

w(1) = 10 (unitless), θα = 80 pixels, and θβ = 19 (RGB channels ∈ [0, 255]).

The algorithm for estimating the local image smoothness [478] required more adaptation.

We observed that, on our data, producing consistent results was challenging with the settings
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(a) Images (b) Smoothness maps

Figure 3.6: 4 out of 20 images we used to identify the values for the parameters for the
smoothness map algorithm

suggested in the original article. We conducted a parameter search using 19 test images and

picked values that performed well while being robust to perturbations, i.e., results produced

with slightly different parameters were also acceptable. We set the standard deviation for blur

to σ = 10 pixels, the Canny [76] thresholds to 20 and 100 (for pixel intensities ∈ [0, 255]),

and ε = 10−6 to compute the defocus value. For the gradient we use the Sobel function of

OpenCV. For the guided filter [168] we set ε = 10−9 and the radius r = 20 pixels. For the

KNN matting [85] we set λ = 0.2, which is a constant controlling the user’s confidence on

the scribble. We set the level to l = 5 which is a unitless constant that controls the amount of

spatial coherence, we use 10 neighbors (pixels) with default spatial coherence and 1 neighbor

with weak spatial coherence. We consider all the values of the user annotation with a defocus

threshold of t = 10−5. Figure 3.6 shows a few examples of smoothness maps computed with

these parameters.

We use the OpenCV implementation of the Canny edge detector with parameters 34 and

45 (channel ∈ [0, 255]). We applied a morphological dilation of radius 0.5 mm followed by an

erosion of the same size (a.k.a. closure) to fill in the small holes that may exist in the edges.

We discarded the edges between the wet and dry regions because they are already visible as

discussed previously.
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3.4.2 Design of the Woodblocks

The images from the Image Analysis were vectorized using path trace in Adobe Illustrator. We

resized them in accordance with the dimensions of the machine press. Marilyn Monroe was

printed in 24 cm× 16 cm blocks, while all the other results in 20 cm× 15 cm blocks.

3.4.3 Fabrication Details

To carve the woodblocks we used a Laser Pro Spirit GLS with 170 pulses/cm or dots/cm, in

raster, with 90% power and 35% speed. The maximum laser processing speed and power are:

203 cm/s and 100 W respectively.

We used Arches hot pressed paper 300 g/m2. For the paint materials we used Winsor and

Newton Colorless masking fluid and Winsor and Newton Cotman paint. In many cases we were

able to find paint tints that closely matched the color palette, otherwise we performed color

mixing using a guidebook by Wilcox [449]. Light colors used a low ink-to-water ratio and

darker parts used a higher ratio (e.g., 1 : 4 for light areas and 1 : 1 for dark areas).

To ensure a flat surface for printing, the paper was stretched on plywood. Before printing the

wet color regions, the paper must also be moistened to allow absorption of the watercolor paints

and permit diffusion effects. We used an aerosol sprayer, and performed a series of spraying and

absorption iterations (see the supplemental material for further details). To perform the printing

we used an Albion press, which is an early iron hand printing press that operates with a simple

toggle action. We experimented with different amounts of pressure. Low pressure was used

for the water areas for improved diffusion gradients. We found that high pressure gave sharper

results in the non-water areas.

3.5 Results

We first illustrate the effects of key elements of our approach. In Figure 3.7, we show that

without our complete pipeline, either spurious edges appear, shading is poorly represented,

and/or diffusion patterns are inadequately shaped. Figure 3.8 gives an example of a print with
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(a) Without semantic
regions, spurious
edges appear.

(b) Without edges
masked, diffusion
covers face features.

(c) Without shading
blocks, shadows are
weak.

(d) Our result.

Figure 3.7: Removing stages in our pipeline negatively affects the results of our algo-
rithm. In this figure, non-skin areas are digitally masked out for clarity.

(a) Print without details (b) Print with details

Figure 3.8: We let users choose whether the print has fine details, e.g., the feathers in
this case. The difference in the color gradient on the bird body and wing comes from the
inherent variations that occur between prints.

and without using detail woodblocks. Figure 3.9 shows three prints made with the same process.

The variability inherent in our process makes each print unique and, at the same time, all the
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prints remain qualitatively similar to the input. Figure 3.10 illustrates the benefits of overlapping

woodblocks for creating smooth color gradients.

Figure 3.9: Two examples of repeated prints to illustrate the variations inherent in our
approach. The top row is the Hibiscus flower and the bottom is the Robin bird. All the
results look stylistically similar. However, due to the liquidity of watercolor unique varia-
tions emerge.

Figure 3.11 shows a set of diverse prints. We chose the portrait because artifacts on faces can

quickly look unpleasant; this result shows that our technique can accurately combine fine details

and smooth gradients. The Hibiscus flower illustrates our ability to produce smooth gradients

with both color and intensity gradations. We picked the Robin bird for the 3-color gradient on

its body and its thin legs. The lake cabin demonstrates that we can also produce prints with

extensive details. We masked out the background region for the bird and flower examples.
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(a) Shrunken color regions (b) Adjacent color regions (c) Overlapping color regions

Figure 3.10: Print of two color blocks. Different strategies to create color gradients. The
top row shows actual prints and the bottom row shows a visualization of the two blocks
that we fabricated. Overlapping blocks (c) produce the smoothest gradients. This is the
option that we use in our technique.

3.5.1 Results Summary

Here, we present for completeness all material for the watercolor prints: Marylin’s portrait,

Hibiscus flower, the Robin bird, and the House on the lake. The output of the Image Analysis

pipeline are placed in Figures 3.12, 3.13, 3.14, and 3.15. The image sequence from top left

to bottom right is: input photograph, color palette, user semantic annotation, semantic map,

defocus map, smoothness map, water map, overlap watercolors, local minima, local maxima,

details, and edges. The designs of the woodblocks are placed in Figures 3.16, 3.17, and 3.18,

and the woodblocks of Marylin’s portrait in Figure 3.4.
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Input Photograph User Annotation Input Print

Figure 3.11: Examples of watercolor prints with a variety of input photographs. (Row 1)
Portrait of Marilyn Monroe‡. (Row 2) The flower is a representative example of creating
a color gradient. (Row 3) The bird has diffusion of more than two colors (Row 4) The
landscape contains detailed textures which are produced with the detail woodblocks
printed on top of the dry blocks.

‡ Photograph by Milton H. Greene ©(2018) Joshua Greene www.archiveimages.com
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(a) Print (b) Image analysis

Figure 3.12: Marilyn Monroe’s portrait. The shading shows the curvature on the face,
the neck, and the shoulders; Marilyn is immediately recognizable even with the absence
of the blond hair and the red lips.

(a) Print (b) Image analysis

Figure 3.13: The Hibiscus flower. The shading has two color gradations and non-painted
areas on the petals that improve image quality.

(a) Print (b) Image analysis

Figure 3.14: The Robin bird. This example, entirely made of watercolor, has a three-
color gradation on the middle of the feathers.
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(a) Print (b) Image analysis

Figure 3.15: The house on the lake. Detailed texture was achieved by the use of two
rather than one dry woodblocks for each color, making the image to appear less flat.

Figure 3.16: The blocks for the Hibiscus flower. The background is not printed, and three
colors are used: yellow, pink and brown. In some of the woodblocks, more than one color
is carved to minimize the consumption in fabrication, e.g., the first shading woodblock
prints both yellow and brown.

3.5.2 Informal User Study

We performed an informal user study with four participants from the local art community,

where we interviewed college-level art majors, and students that had taken at least one class on

printmaking or painting. We asked for feedback on three results including the Marilyn portrait,
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Figure 3.17: The blocks for the Robin bird. The background is not printed, and three
colors are used: light blue, orange, and gray. Also, there are no dry woodblocks, except
from the details woodblocks which in some of our prints were printed with water.

the flower, and the bird. We did not describe how the paintings were made.

All participants had positive reactions and specifically commented on the color diffusion

effects and the shading. They remarked on the “creation of roundness,”“illusion of depth,”“nice

washes of color,”“color blending,”and “interesting color overlapping effects.”All participants

liked the color palette selections with two specific exceptions: students would have preferred

a darker brown color in the flower print, and in the Marilyn print they would have preferred

the black regions in the hair to be lighter since it appears to be background rather than shading.

Participants also commented on the sharp edges and use of white lines between color regions

(results of the masking fluid). An art major commented on the flower: “the sharp border is very

cleverly placed because it makes the stem pop out.”Another art major liked the negative space

created by the borders. A third student noted “the borders add to the abstraction and simplicity

in a good way.”
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Figure 3.18: The blocks for the house on the lake. This large number of woodblocks was
a result of the more extensive color palette (light gray, blue, green, and dark gray) and
made the printing process more challenging. The wet woodblock printing in particular
required a quick process for the paper to remain wet.

3.6 Exploring Alternative Paths

3.6.1 Masking the Paper

The paper needs to withstand heavy dampening with water without tearing apart, to allow for the

diffusion of the colors and to permit some kind of masking technique. To meet our low budget
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Figure 3.19: Choosing materials for masking. The left image shows a previously masked
area with masking fluid. The middle and right image show the results of experimentation
with stencil & tapes.

objective, we experimented by using conventional papers for printing and cheap watercolor

papers. These papers were not suitable for our fabrication pipeline. Specifically, some paper

types diffuse color more easily than watercolor paper, but they are destroyed when we apply

masking or water. We use Arches hot pressed paper 300 g/m2 which met all the above criteria.

For masking the paper, we experimented with ideas borrowed from watercolor painting.

We used different leveling on the woodblocks that could simulate the touch or non-touch of a

brush on the paper, but all the outcomes resulted in failures. Thus, we looked into how we could

combine masking fluid or tapes and stencils.

All the tapes and stencils we tried seemed to visually disturb the surface of our paper

(Figure 3.19). To cut the tape or the stencil to a desired shape, we used a vinyl cutter. The

benefit of this technique is that the resulting masking area has a sharp and accurate shape. A

negative is that the exact alignment of the stencils/tapes on the printing in progress becomes

complicated. Also, we had to manually remove the negative areas of the stencils/tapes once

glued on the paper. This process becomes more difficult when the complexity of the shape of

the masked area and the number of the disconnected pieces of the shape increases.

For all the reasons mentioned above, we decided to use masking fluid. Compared to the

tapes, the masking fluid disrupts the paper less. We confirmed that we can apply the masking

fluid using a regular woodblock. Therefore, deviations from our printing process were not

necessary. We brush it and press the woodblock on the paper three consecutive times. However,

the masking fluid creates shapes which are less sharp-accurate, compared to the shapes created

by the stencils. The masking fluid is always applied on the white paper before application of
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other colors and is removed after it dries using rubber cement.

3.6.2 Carving the Blocks

(a) Unsuccessful print, carved
by milling machine

(b) Successful print by milling
machine thickening the lines

(c) Successful print, carved by
laser cutter

Figure 3.20: Woodblocks carved by different machines and the prints produced by them

Our goal was to create multiple prints from the same woodblocks. In other words, we wanted

the woodblocks to withstand the pressure from the machine press without tearing apart. Also,

we wanted the carved area of the woodblocks to be as close as possible to the black-white images

given as input to the machine. For that reason we first looked into a variety of machinery to carve

the woodblocks. We tried two laser cutters Laser Pro Spirit GLS, C180II and a CNC (computer

numerical control) milling machine, ShopBot Desktop. The woodblocks carved by the milling

machine were not as detailed as the woodblocks carved by the laser cutter. Specifically in

Figure 3.20, one can see three woodblocks and their corresponding prints on the right. The first

two, Figures 3.20a, 3.20b, were carved by the milling machine, while the third, Figure 3.20c,

by the laser cutter. Many of the small areas that were correctly carved by the laser cutter were

destroyed by the milling machine, which is evident on the prints. To successfully print an image

from a woodblock carved by the milling machine, we substantially thickened the lines of the

block Figure 3.20b. Therefore, the milling machine is not appropriate for our small scaled

woodblock printing.

We chose the Laser Pro Spirit for all the reasons mentioned above and because the smaller

laser cutter C180II was slower and could not cut through our 13 mm thick woodblocks.

The time to carve one plywood woodblock of size 200 mm× 150 mm× 13 mm using the
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Laser Pro Spirit GLS, was approximately 20 min, depending on the input image.

Small elevated pieces in the woodblock are easy to break with multiple prints. To address

this issue we explored multiple materials.

Figure 3.21: Prints by blocks carved
on different materials: woodblock Vs
Plexiglas block

Specifically, in Figure 3.21 there are two prints

of the same image. The laser cutter carved the im-

age onto a woodblock and on a Plexiglas block. The

print resulting from the woodblock is placed on the

left of the Figure, while the print from the Plexiglas

block is placed on the right of the Figure. Plexi-

glas produced a low quality print with watercolors.

We also tried MDF (Medium-density fiberboard),

which also gave bad quality prints. Therefore, we

rejected them.

We tested pine (Figure 3.22(c)), cherry (Figure 3.22(b)), and plywood (Figure 3.22(a)) and

compared their results. Cherry gave strong woodblocks with sharp details but it was expensive

compared to pine and plywood. The pine wood appeared to be the softest, and to be destroyed

easier after burnt by the laser cutter. Therefore we settled for plywood, which although less

strong than the cherry, it was also more affordable. We could not print features thinner than

0.7 mm because the wood broke. For that reason for the details blocks we used the offset path

tool of Adobe Illustrator with value 0.2 mm. We tried 6 mm thick plywood, but we noticed that

the surface warped. The prints were not acceptable, because the pressure was not uniform on

the entire surface of the block. We switched to 13 mm thick plywood, which in the majority of

the cases remained flat. To avoid warping of the low thickness plywood, waterproofing could be

effective.
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(a) Plywood (b) Cherry (c) Pine

Figure 3.22: Carving different types of woods

3.6.3 Dampening the Paper

Figure 3.23: Color expansion when dampening paper with brushes, the color gradients
are not sufficiently big.

We want a substantial uniform water application to successfully print predictable watercolor

diffusion. We explored two methods for dampening the surface of the paper: brushing and

spraying. For the brush watering experiments we used two different sizes of flat watercolor

brushes, one of size 19 mm (Neptune Watercolor 4750 Aquarelle 75) and one of size 38 mm

(Neptune Watercolor 4750 Mottler 150). We covered the paper with multiple parallel strokes

one after the other. It became difficult to have uniform dampening of the paper because of

strokes overlapped. Also, due to the time difference between the first and the last brush stroke,

the paper dampening was inconsistent. Moreover, the control of the dampening was dependent

on the person that was doing it, and for that reason the amount of water was difficult to be

measured. In addition the diffusion was not sufficiently large. To distinguish between the two

different brushes we used different colors in Figure 3.23. The yellow represents the small brush
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and the black the big brush. The size of the expansion was approximately 0.1 cm for the small

brush and 0.2 cm for the large brush (Figure 3.23).

(a) 1 Spraying (b) 4 Sprayings (c) 7 Sprayings

Figure 3.24: Different number of spraying after the printing of the block

For all the reasons mentioned above we switched in using a spray which gave us better

results. If we sprayed from a fixed position, we could not succeed in a uniform and fully

covering the paper water application. Therefore, we moved around the spray trying to succeed

an approximately uniform dampening. Here we noticed that if the spray sprays too fast or if it

creates big droplets, it is difficult for a person to maintain a uniform spray. We tried different

sprays and the spray that gave the most satisfying results was a hand pump aerosol spray.

The uniformity of the manual spraying using this spray was sufficient for the purposes of our

fabrication goal. To have a more accurate and uniform liquid deposition we could use a patented

technique [344, 442]

Figure 3.25: Result of diffusion with excessive
water application.

Finding a balance between the desirable

abstraction and the undesirable uncontrolla-

bility of the watercolors was a main challenge

of our work. Small water presence removed

the abstract watercolor quality of the print,

while excessive water gave unpredictable re-

sults (Figure 3.25). We looked into how we

could controllably expand the area of color

diffusion. When spraying happened before

the printing, it resulted in big uncontrollable diffusions. When the paper is overly wet, it adheres
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to the woodblock. Subsequently, the woodblock’s removal from the paper is not smooth and

it disturbs the water and the paints on the paper. On the other hand, if the surface is not wet

enough, then the diffusion of the colors is small. To solve this problem, we apply the water in

small quantities until we ensure the paper is uniformly and sufficiently wet. We then print the

woodblock and finally we spray again to drive a wide controllable diffusion. The amount of

this last spray influences the width of diffusion. The sub-figures of Figure 3.24 show the color

expansion after 1 spray, 4 sprays and 7 sprays. The prints made with the same woodblocks, but

by applying different amounts of water are in Figure 3.26. On the left the image sprayed with

less water, at the right an image with our spray setting.

(a) spraying less result (b) our spraying setting

Figure 3.26: The same woodblocks for pink and yellow colors printed with different
amount of spraying. Here, we adjusted the images to better match the input photo.

3.6.4 Stretching the Paper

To have uniform color diffusion we want the paper to be well stretched and attached to a

plywood of 13 mm thickness. On Figure 3.27 is a not well stretched paper and the colors diffuse

in an unpredictable way. Before the plywood, we had used boards specifically designed for

stretching watercolor papers, but after a couple of iterations inside the machine press, the boards

were destroyed. To stretch the paper we used a stapler which we found more successful than

gummed tape. Sometimes it happened that even after we had stretched the paper it did not

remain stretched when we wet it. In those cases we wet on the opposite side of the print and
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re-stapled the paper before we continued printing. To align the woodblocks we designed and

assembled a corner using the laser cutter. Please watch accompanying video to see the printing

process and tools used.

Figure 3.27: Result in diffusion by not well stretched watercolor.

In our fabrication process we use wet-on-wet to print the colors in both wet and dry areas.

For the dry area the paper is moderately wet, as in traditional woodblock printing. For the wet

area the paper is more wet and we apply additional water after the print. When we print the

masking fluid we use wet-on-dry.

3.6.5 Modifying the Image Analysis Pipeline

If the user does not want to have white lines, she can segment manually the woodblocks. We

tried that for the flower, the corresponding print is placed in Figure 3.28(a).
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(a) Printing without white areas on the edges. (b) Printing by finding minima in the entire image.

Figure 3.28: Different approaches than ours. It is a matter of personal taste which is
preferable.

Another idea that we looked into, was to create the blocks for local minima found on the

entire image and not found in every color separately, similar to how we found the local maxima.

One can look the resulting print when we changed the minima pink block for the Hibiscus

flower in Figure 3.28(b). The comparison with our decision of the minima block is up to the

aesthetic interpretation of the designer.

Figure 3.29: Adding eastern style lines,
produces a less watercolor look.

Some of the ideas we experimented with cre-

ated prints with “reduced” watercolor look. For

example, placing the prints closer to the look of

a traditional woodblock print, one such example

is placed in Figure 3.29, this example has edges

printed on the wet area.

3.7 Conclusion

We have presented a novel technique of fabricating original watercolor prints given an in-

put photograph using image processing. Our technique generates woodblocks based on the

photograph’s segmentation according to color values, user-annotated semantics, smoothness

values, and luminosity. We provide a pipeline to fabricate the prints using watercolor paints by
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taking advantage of the color diffusion in the water. Our technique fabricates prints that match

different aesthetic preferences. We hope that it will stir the interest of people from different

backgrounds, who will consider using it as a tool to create their own designs driving our idea of

water-woodblock to other directions, or experimenting and creating other innovative art media.
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“Touch is the sense through which life is defined, because without touch

is impossible to be.”

Aristotle, D’anima 4
Tactile Illustrations

Understanding the 3D geometry of everyday objects via 2D media is essential to live, learn, and

work. Designers communicate the shape of a product (e.g., a chair) via sketches and renderings.

Consumers understand the design by browsing images of the product in a catalog. Students

learn physics, such as why a plane is shaped in a certain way for aerodynamics, from figures in a

textbook. Visual perception of complex 3D geometry from a 2D projection is taken for granted

by people with healthy vision. However, for people with near or total blindness, understanding

3D geometry of daily objects from current media is extremely challenging.

In this paper we introduce a novel approach to generating tactile line drawings that aid 3D

shape understanding in users with near or total blindness, enabling the blind community to

perceive complex 3D objects from 2D media. Members of the blind community rely heavily on

tactile illustrations, defined as raised graphics (e.g., on paper) that are felt by hand. Common

uses of tactile illustrations are to make visual information accessible in textbooks, maps [67,150],

scientific diagrams [70], children’s literature [93, 391, 392], or museum exhibits. The tactile

illustration in Figure 4.1 shows two representative samples, both used to give access to artifacts

displayed in the Museum of Fine Arts Boston.

To design these types of tactile illustrations, designers rely on guidelines provided by a

number of associations, such as the Braille Authority of North America [315]. Hundreds

of pages of rules make manual design time consuming. For example, rules related to size,

placement, variety, and form of different elements (e.g., lines, textures, points, labels, titles, and
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(a) (b) (c) (d)

Figure 4.1: Tactile illustrations (a,c) displayed alongside exhibits in the Museum of Fine
Arts Boston (b,d) for accessibility purposes (www.mfa.org). Black areas in illustrations
indicate raised regions on the paper surface that can be perceived by touch.

captions) permit easier exploration. Rules related to simplification, separation, elimination, and

distortion of the illustration avoid clutter. Rules related to semantic segmentation, keying of the

design, and selection of viewpoints permit easier understanding.

Unfortunately, studies have shown that shape understanding is flawed in traditional tactile

diagrams, which can be seen from low object identification scores [212]. We aim to improve

shape understanding by re-evaluating graphic design considerations and accounting for the

unique needs of blind individuals. For example, while current tactile illustrations are created

from a standard single viewpoint, a blind individual who has never had access to visual informa-

tion might find it unnatural to explore a visual image that includes perspective distortions. This

is supported by drawings created by blind individuals [205], in which illustrations of 3D objects

appear to use a “fold-out” method to arrange faces onto a flat surface [224].

In this paper we first present two formative studies that motivated our approach to tactile

illustration. We investigate salient shape properties in tactile perception, and assess the strengths

and weaknesses of existing tactile illustration styles. Next, we propose a novel method to

render tactile graphics with a focus on improving shape understanding of 3D objects. We

design a pipeline introducing a multi-projection rendering approach combined with texture

infills that communicate surface geometry. Compared to a single-viewpoint illustration, our

multi-projection method carefully places a local camera for each semantic part of the input
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object(Figure 4.2(c)), so that each part may be rendered from its optimal viewpoint. A com-

positing stage aligns image layers created from each camera to maintain proper connectivity of

the input object. Our texturing technique then uses closely spaced lines generated from cross

sections to give cues about surface geometry of the object(Figure 4.2(d)). In summary, we make

the following contributions:

• We present results of a formative study involving sculpting 3D objects, aiming to discover

salient information for blind users in haptic shape understanding (Section 4.2.1).

• We present results of a second formative study on the success of existing 2D tactile

illustration guidelines for shape understanding (Section 4.2.2).

• We introduce a new design methodology for tactile illustrations based on the outcome of

our formative studies, applying techniques in multi-projection rendering and geometry-

aware textures (Section 4.3).

• We design and implement a user study evaluating the ability for blind users to understand

3D shape with our new illustration style (Section 4.4).

(a)

(b) (c) (d) (e)

Figure 4.2: Generating tactile illustrations to improve shape understanding in blind
individuals: (a) Physical 3D printed object; (b) Input to our pipeline: a pre-partitioned
object with colors indicating segments; (c) Local part cameras; (d) Resulting stylized
illustration with curvature indicative texture; (e) Evaluation of tactile illustrations on
microcapsule paper in a user study with 20 blind participants.
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4.1 Background Material

Our approach to tactile graphics, in addition to the design principles of stylized graphics

illustration presented in Section 2, is also motivated by cognitive principles in tactile perception

as discussed below.

There are still many unanswered questions about human perception: how perceived infor-

mation is transformed into meaningful representations for the brain, how it is stored, and how

it is accessed and retrieved at a later time. Cognitive science focuses on giving answers to

these questions. Important findings in cognitive science have revolutionized other areas, such as

computer vision, marketing, and information visualization. These findings play an important

role on computer graphics research, especially related to perception, which is fundamental to

the work of this project.

Human perception has been a concept underlying many works in graphics-related re-

search [38], e.g., visual [62, 280, 329, 421] and audiovisual perception of materials [279]

and in fabrication-oriented research, e.g., perception of tools in virtual drawing [334]. Per-

ception has also been researched in relevant research regarding touch, e.g., vibrations [40],

mid-air haptics [135],| perception of epidermal devices [310], tactile saliency [231], and tactile

roughness [416]. Finally, more relevant to our work concerning shape understanding, perceptual

studies have been conducted related to, e.g., enhancement of 3D objects with texture for better

shape understanding [458] or sketches of objects [120, 188].

Touch While vision has been well studied, touch has not been as extensively researched. In

this project, we focus on the sense of touch, which allows humans to perceive information of

objects that surround them. The skin is our largest organ, and the perception of touch arises not

only through the skin, but also by the positions and movements of muscles, tendons, and joints,

which makes tactile perception complicated. Also, skin resolution is much lower compared

to the resolution that the eye can capture, and the pathway of signals is different from vision,

making its corresponding illustrations different in terms of design and fabrication.
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Tactile Perception of Shape Mental representations in shape understanding are an active

area of research in psychology and neurobiology, particularly concerning similarities in how

humans perceive shapes visually and through touch [126, 192, 227]. A prominent theory on

shape understanding is “recognition by components” [51, 53], suggesting that our visual system

processes shape information by representing an object as a spatial arrangement of 3D parts

called geons (generalized cones). Our visual system extracts geons and their arrangement

from an image to recognize the object. Visual translation theory hypothesizes that haptic

perception is translated to the same visual representations [103, 125, 163, 233], while other

work suggests vision and haptics are functionally overlapping but do not necessarily have

equivalent representations of 3D shapes [126, 192, 227]. Our proposed work on illustration style

abides by visual shape recognition theory, where pictorial representations should clearly show

subcomponents and their arrangement in space [411].

The following subsections discuss four key elements on 3D shape perception: shape skeleton,

shape curvature, camera viewpoint, and shape segmentation.

4.1.1 Skeleton

A skeleton, like the skeleton of vertebrates, synthetically defines a shape and makes intelligible

its general organization while helping to visualize its possible deformations. Mathematically,

a skeleton is a union of lower dimensional manifolds that is “homotopy equivalent” to the

shape. As such it characterizes the topology of the shape. Skeletons, and more particularly

medial representations, are computed for analyzing and identifying shapes, with a purpose

of automatic recognition of objects, or of a human eye diagnosis. While such models lend

themselves to identification and matching, and are therefore used for retrieval [145, 396], other

researchers looked into the role skeletons play in perceptually identifying shape similarity [260].

In non-photorealistic rendering, skeletons have been used to display trees as cartoons [129] and

to decide direction of lines in line drawings [110] among others.

Computer graphics also use skeletons as a starting point for shape design [184]. Skeletal

animation (rigging) is an established technique to animate moving characters. Ultimately, shapes
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will be represented by their boundary surfaces, as either an implicit or parametric surface, or

as a fine mesh. Yet the overall design of the shape and its topology is more easily entered

as a skeleton. This correspondence between shapes and skeletons arose during the projects

briefly described in Appendices A.2.1 A.2.2, and helped to develop the approach used to extract

lines that indicate curvature. Of the many techniques that have been developed to extract

skeletons [368,399,401], we use the freely available implementation of CGAL [407]. Skeletons

have been previously used in painterly rendering techniques to parametrize a 3D shape, e.g.,

similar to [110].

4.1.2 Curvature

Curvature, tactily, is an important geometric characteristic of 3D shapes [178, 466]. Because

of its importance in the human perception of 3D shapes, we would like to communicate this

information in our tactile illustrations. For this purpose, curvature at different parts of a 3D

model is extracted in the form of cross section lines following its model’s skeletal structure.

Curvature [356] has been used extensively for visualization, e.g., for vector fields [408], for

maps [361], for line depiction [186, 353], for watercolor paintings [267], for shapes [107, 185],

and for shape analysis, used in decomposition [117] and fabrication [402]. It has also been

used for the design of textures in simplified 3D shapes [458]. For the design of curvature lines

we sample the skeleton in equidistant points (with constant radius spheres) and we intersect

with planes that pass through the lines and are perpendicular to the skeleton. The points are

the centers of the cross sections and are used to lay the cross sections parallel to the viewing

directions that result in curvature lines.

4.1.3 Viewpoints

The selection of viewpoint strongly influences object recognition accuracy [126, 170]. An

experiment, testing how viewpoints affect haptics, showed that on recognition of 3D shapes,

viewpoint plays a more pronounced role in haptics compared to vision [126]. Given that

viewpoints affect perception, we want to have a measure of the suitability of a specific viewpoint.

71



This type of concern has been investigated by computer graphics researchers. A review

of works about computation of viewpoints is written by Bonaventura et al. [57]. Preferred

viewpoints have been investigated with different optimization criteria in mind, such as scene

understanding [426], organizing and displaying shape collections [486], displaying object

collisions [141], and cartoon rendering [339].

As concerns viewpoint preference, we follow an approach borrowed by Secord et al. [372]

which measures the preference of a viewpoint based on human perception. We follow the

approach of Secord et al. and restrict the camera up-vector to the z-axis of the object. While

the computation of up-vector is a research area in the graphics community [136], in the used

data set is provided [294]. In vision, natural viewpoints, i.e., most typical viewpoints [54],

follow the up-right position of an object, but are not usually aligned with its coordinate frame.

The importance of viewpoint preference was illustrated during one of the first projects I was

involved during my PhD. In this project, viewpoints helped to improve the aesthetic quality of

3D printed objects; more details about the Viewpoint Preference Computation can be found in

Appendix A.1.

Canonical Viewpoints

Illustrators often choose domain-specific canonical views. In some cases, projections in which

the main axis of the object is not aligned with the viewing direction (i.e., non-canonical

viewpoints) are used in advertisements and in instructional assembly materials, e.g., IKEA

furniture directions. However, in other cases, views are aligned with the object axis (i.e.,

canonical viewpoints), such as human anatomy illustrations. Usually, more than one axis

aligned views are used, e.g., floor-plan, section, elevation in architecture.

It has been shown that, for touch, canonical viewpoints [74] are easier to interpret. We use

canonical viewpoints for the rendering of each object part. Different graphics techniques for

extracting canonical viewpoints have been proposed, with many of them relying on principal

component analysis (PCA) [82, 161, 256, 429], which is also the technique we use in the current

project. We allow for different viewing directions for each part by using a multi-projection

rendering approach.
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Camera Projections

Non-standard perspectives were used to improve visibility, e.g., to remove occlusions [123] or

to create a particular style. For example, these can by found in technical drawing, in the form of

linear perspective with 0 vanishing points (parallel projection), or in Byzantine drawings in the

form of divergent (or inverse) perspective [179]. Similarly, curvilinear perspective [277] (e.g.,

fisheye views) can be used in photographic cameras and maps. In addition to the use of a single

non-standard perspective with multiple number of vanishing points, multiple viewpoints have

been used to create a single image with a large angle of view.

Some works in multi-perspective rendering allow for broad visibility and create images with

space distortions [290, 340, 470], which we want to avoid. Therefore, we build upon a work

from computer graphics research [23] which can create a distortion-free image, and we extend

this technique to be a better fit for the purposes of our application. The positions of the cameras

are defined from PCA, while the up-vectors are initialized using a vector field [13] and later

aligned according to connectivity between parts. We also use orthographic cameras, similar to

technical drawings, to avoid perspective distortions.

4.1.4 Shape Segmentation

In graphics several segmentation techniques exist [146,165,198,199,382,437,468,484]. For the

purpose of this work we use a readily segmented data set [294]. Shape segmentation is a hard

open problem actively researched in graphics. When we were working in the second project

of this thesis and tried publicly available implementations for shape segmentation, the results

were not satisfactory, and therefore we decided to use pre-segmented data set, which allowed

experimentation, without the need of segmentation.

4.2 Formative Studies

In this section we present two formative studies that guided our new design approach for

tactile illustrations. The first investigates what information is considered salient in tactile shape
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understanding. The second study assesses how successfully existing illustration guidelines

convey 3D shape information.

4.2.1 User Study 1: 3D Shape Replication

We performed an object replication task to develop a deeper understanding of shape characteris-

tics blind people consider salient. The experiment involved a sculpting task where the aim was

to identify shape characteristics that participants focus on.

Figure 4.3: Sculptures from User Study 1. (Top row) Reference objects. (Middle row)
Participant 1 sculptures. (Bottom row) Participant 2 sculptures.

Apparatus and Participants.

We selected a variety of man-made and natural objects with different levels of shape complexity.

Two congenitally blind participants (1 female) participated in the study, where they were given

an hour to sculpt five shapes, including a pyramid, dolphin, cup, chair, and human in a neutral

standing pose (Figure 4.3, top row) using 4 oz of polymer clay for each shape.
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Task and Procedure.

Participants were instructed to sculpt replicas of the shapes. They were also asked to identify

each object and describe its shape and any difficulties encountered while sculpting.

Observations.

The results of the study (Figure 4.3) suggest a number of important findings. First, the partici-

pants segmented the shapes into distinct geometric parts (F1). For example, they first created the

four chair legs and brace segments, then proceeded to connect the pieces together. Participants

were also able to correctly follow the topology of the reference shapes (F2). An example of this

is sculpting the correct number of pieces to construct the legs in the chair model. They were

also able to sense simple shapes of the objects or the cross section of a part (e.g., square base for

the pyramid, rounded cross section for the body of the dolphin, or cylindrical cross section for

the cup). Participants were also able to notice differences when cross sections change within the

same part (F3). For example, they noticed the change in cross section from the front to the back

of the dolphin body. Participants also pay attention to the curvature properties of the surface

geometry (F4). For example, they flattened the facets of the pyramid and created distinct edges,

or sculpted a rounded shape for the dolphin’s body.

Participants encountered a number of challenges during the study. For example, participants

were unable to accurately replicate positions of parts (F5). Sometimes they even misidenti-

fied relative positions (e.g., failing to make the dolphin’s pectoral flippers symmetric). The

participants also experienced difficulties in accurately capturing proportions (F6), e.g., the

height-to-width ratio of the pyramid was less important than replicating a sharp point at the

apex.

Our findings suggest that to communicate 3D shape information effectively to blind users,

the following important characteristics should be conveyed through the illustration:

• Distinct parts within an object (F1)

• Topology of the shape (i.e., preserve part connectivity) (F2)
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• Cross section shape and propagation (F3)

• Curvature of surface geometry (F4)

Our findings also suggest that the following characteristics have low importance in shape

understanding:

• Accurate placement of the connection points (F5)

• Accurate proportions (F6)

Note that F5-F6 were independently observed, not inferred from F1-F4. The preliminary

findings in our object replication study align well with existing theory on shape understanding,

in particular the “recognition by components” theory [51, 53] of how any view of an object can

be represented as a spatial arrangement of 3D parts (called geons, or generalized cones).

4.2.2 User Study 2: Assessment of Existing Illustration Guidelines

Apparatus and Participants.

Seven congenitally blind participants (3 female, aged between 30 and 72) participated in our

study. We chose five reference objects familiar to our participants: teapot, lamp, eyeglasses,

chair, and rocking horse. We created tactile illustrations for each object in three different styles

(Figure 4.4):

1. Line drawing with object in non-canonical view (also known as perspective or 3/4 view).

2. Line drawing with object in canonical view (e.g., front or side).

3. Line drawing with canonical view and texture-infills to indicate different semantic regions

in the illustration.

In case (2) we used two viewpoints (i.e., 2 corresponding illustrations) if important infor-

mation was contained in both, following recommendations by the Braille Authority of North

America (BANA) guidelines [315]. In case (3) the separation into semantic regions and selection

of textures were following BANA guidelines. All illustrations were made by a trained graphic
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designer. The physical tactile diagrams were created by laser engraving commercially available

capsule paper.

Figure 4.4: 3D printed reference objects for User Study 2 (row 1). Corresponding illus-
trations: non-canonical views (row 2), canonical views (row 3), and textured canonical
views(row 4).

Task and Procedure.

During the study, participants were asked to use the three tactile illustrations to recognize the

tested objects, identify parts of the objects (e.g., locate the spout of the teapot), explain the

perceived shape of the parts, explain the connection between the parts (e.g., where the spout

connects to the main vessel), and count the number of the parts. We showed the objects in the

same sequence to all users: (1) non-canonical, (2) canonical, (3) textured canonical.

Observations

Several important findings were observed from our study regarding the key characteristics

related to tactile line-drawings in communicating 3D shape information, including the number

77



of viewpoints, viewpoint selection, occlusion, and shape understanding.

Multiple viewpoints According to the Braille Authority of North America (BANA) guidelines

for tactile graphics [315], multiple views should be provided if they contain information

important for the intended task (guidelines: 10.1.4; 7.1.1.5; 3.6.2). However, we found people

could not successfully identify correspondences between the different illustrations (F7). Instead,

participants often chose to explore their preferred viewpoint to perform a task, even if the

essential information was contained in the other view. It was considered cumbersome to explore

more than one diagram at a time.

Viewpoint Selection Selection of viewpoints has been shown to influence object recognition

accuracy [170]. We also found that participants’ ability to identify an object from an illustration

had higher success rates for canonical viewpoints (21%) vs. non-canonical viewpoints (6%)

(F8). However, participants were generally not satisfied with any of the canonical viewpoints

provided. For example, in the eyeglasses illustrations participants commented that the front view

depicted the correct size for the lenses but the wrong size for the frame arms, and the opposite

was true for the side view. A participant suggested combining viewpoints: showing the lenses

from the front and the frame arms from the side. That is, create a combined multi-projection

image in which each part will be shown in its optimal view (F9).

Occlusions One of the most common complaints from participants was the absence of parts

from the diagrams, which was a consequence of occlusion (F10). For example, in the chair

illustrations, front and side views were provided (Figure 4.4) and a participant indicated that the

chair seemed to have 2 legs instead of 4. This is consistent with an existing study by Moringen

et al. [300] that showed occlusions affect tactile shape recognition.

Shape understanding Illustrations rendered in canonical views were generally better for

understanding surface geometry compared to non-canonical views (F8). When asked about parts

being more rectangular versus cylindrical, users were 71% correct for canonical illustrations

versus 48% for non-canonical views. However, in some cases the non-canonical views improved
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shape understanding. For example, the non-canonical view of the teapot was more successful

for recognizing the spherical shape of the main container, whereas in the canonical view it was

perceived as cylindrical or cubical. Possible reasons are the curved edge along the bottom of

the teapot and ellipsoidal shape of the lid (Figure 4.4). This is in agreement with a study by

Thompson et al. [411] which showed that curved lines as textures in tactile illustrations give

indication about the geometry of the represented shape. Further, a study by Yau et al. [466]

showed that line orientations and the level of curvature and curvature direction of lines changes

are identifiable by touch (F11).

Foundations for the New Design

Based on User Study 2, we propose a number of additional design guidelines to improve 3D

shape understanding using tactile illustrations:

• Contain all information in a single illustration (F7)

• Depict canonical viewpoints (F8)

• Combine multiple viewpoints within a single illustration so that each part of the object

can be depicted optimally (F9)

• Choose a viewpoint of the object to reduce occlusions (F10)

• Use curved lines to communicate surface geometry (F11)
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4.3 Tactile Illustration Method

4.3.1 Overview

Given the design foundations derived from our formative studies, we present a new approach to

creating tactile illustrations of 3D objects. Our method combines images from different view-

points, applying techniques in multi-projection rendering. We also introduce a new approach to

generating tactile infill textures that communicate the surface geometry of the object.

Our illustration approach draws inspiration from the artistic multi-projection rendering

stylization introduced by Agrawala et al. [23]. Similar to their work, we create a set of local

cameras which render images from different viewpoints. We then employ a master camera

to combine the local renderings into a single layered image. A key difference to Agrawala et

al. [23] is that our local cameras are assigned to segmented parts within the same object. This

means our method must constrain relative positions of part-level renderings in order to maintain

correct connectivity in the final illustration. Further, our approach automates camera positioning

by defining a notion of optimal viewpoint for each part.

The input to our pipeline is a partitioned 3D object. Users can either manually partition the

object or use an automated technique (e.g., [484]). We use the PartNet data set [295] consisting

of pre-partitioned 3D objects in a wide range of common object categories, and provided in

up-right orientation. Our pipeline outputs a stylized multi-projection rendering, which can then

be fabricated to produce a tactile illustration. The main steps of our algorithm are as follows:

1. Determine local camera poses. A part camera is assigned to generate a rendering for

each decomposed part of the object, with position and orientation chosen according to

visibility objectives (Section 4.3.3). A master camera is employed to combine the multiple

renderings into a unified illustration (Section 4.3.2).

2. Generate texture infills for each part rendering. We integrate surface geometry information

using cross sections extracted along the object skeleton (Section 4.3.4).

3. Compositing the final illustration from local part renderings. The combination of image

81



Figure 4.6: Different metrics considered for finding the master camera placement. The
viewpoints maximize: (A) Silhouette Curvature Extrema, (B) Silhouette Curvature, (C)
Projected Area, (D) Silhouette Length, (E) Surface Visibility, (F) Maximum Depth, (G)
Depth Distribution, (H) Viewpoint Entropy. The maximum silhouette length (D) decreases
part occlusion.

layers accounts for relative up-vector alignment (Section 4.3.5), part connectivity within

the 3D object, and occlusion handling (Section 4.3.6).

4.3.2 Master Camera Placement

In our multi-projection approach a master camera is used to organize the rendered images from

each local part camera. As discussed in Section 11 (design foundation (F10)), viewpoints that

result in non-coincidence of parts on the image (i.e., not more than one part appearing on each

pixel) are preferred. The view from the master camera helps to define the local part camera

frames to assess part visibility in the final composition.

To determine the master view direction d̂M we follow the approach of Secord et al. [373],

where several attributes are defined for identifying preferred visual viewpoints. We notice that

viewpoints that maximize the silhouette length result in decreased part coincidence. Silhouette

length is defined as the overall length of the object’s silhouette in the camera’s image plane.

For example, in Figure 4.6(D), overlap between the handle and main container is small when

viewed from a direction that maximizes silhouette length.

Next, we align the up-vector of the camera ûM with the up-vector of the object. This results

in a top to bottom layout in the final illustration (i.e., the base of the object is positioned at the

bottom of the illustration), which is a natural choice and follows the Braille Authority of North

America (BANA) guidelines and standards for tactile graphics [315] (6.11). Note the object

up-vector is not considered in Secord et al. [373] for viewpoint selection. We fix the up-vector
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and constrain the camera location to a ring centered in the object (Figure 4.5(b)). More details

about the master camera computation are in Appendix B.2–B.3.

4.3.3 Part Camera Placement

Next, we determine a local frame for each part camera. As discussed in Sections 4.2.2 and 11

(design foundation (F8)), canonical views tend to improve shape understanding for blind users.

To identify the canonical viewpoint for each part we first extract a coordinate frame {ê1, ê2, ê3}

using PCA, similar to Vranic et al. [430], more details in Appendix B.4.

We next extract an one-dimensional skeleton for each part using the mean curvature skeleton

by Tagliasacchi et al. [399] (white lines in Figure 4.5(c)). We reject the PCA axis that most

closely aligns with the skeleton, which will be important later when creating infill textures.

Between the remaining axes we choose the direction corresponding to the largest projected

area. For simplicity this is done heuristically by aligning a bounding box (Appendix B.5) to the

frame (Figure 4.5(c)), and selecting the axis corresponding to the largest face on the bounding

box (i.e., face with normal êi). Between the ±êi directions, we choose the one that gives a

viewing direction in the same half-space as the master camera, where local camera viewing

direction is d̂P = ∓êi. More details are in Appendix B.6. The part camera location is given by

pP = cP − rd̂P , where cP ∈ R3 is the centroid of part P and r is the distance to the camera.

The part P is centered in the local camera viewport.

4.3.4 Cross Section Textures

The next step is to create the infill textures. Compared to the BANA standard [315] which uses

uniform textures to denote semantic regions, we choose to incorporate properties of surface

geometry motivated by design foundations (F3, F4, F11). Many methods have been explored for

creating interior lines and textures in non-photorealistic rendering, such as hatching and cross

hatching [200] or apparent ridges [197]. However, these approaches are based on illumination

effects of shading or view-dependent properties which are not relevant to blind users for tactile

perception of 3D forms. Similar to Deussen et al. [110] we choose to create texture infills using
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cross section boundaries to illustrate the geometry of each part.

As noted in Section 4.3.3, for each part we extract a 1D skeleton using the method of

Tagliasacchi et al. [399]. We initialize the cross sections to be uniformly sampled along the

skeleton, with normals, n̂cs, aligned with the local skeleton direction. Next, to allow for visibility

of cross sections on the image and remove perspective distortion, each cross section is flattened

by rotating to lie parallel to its corresponding part camera view plane (Figure 4.5(g) and

Figure 4.7). The skeleton sample point remains fixed with the rotation axis given by d̂P × n̂cs,

where d̂P is the view plane normal for local part camera P . We then render a line for each cross

section silhouette from the corresponding part camera. The layering of cross section silhouettes

in the image follows the sampling ordering along the skeleton (pseudocode in Algorithm 1).

The spacing of cross section lines considers limits on resolution for tactile perception. The

cutaneous system has poor spatial resolution compared to vision [53, 233, 443], such that high-

frequency details are lost when haptically perceiving raised lines. We follow recommendations

from the BANA guidelines [315] of 2 mm to 3 mm gaps between elements to be distinguishable

by hand.

ALGORITHM 1: FLATTENEDCROSSSECTIONS (Sk, ShapeP , d̂P )
Input: Sk = [sk1 . . . skn] a sequence of regularly sampled points on the skeleton. The

geometry of the part, ShapeP . View plane normal d̂P for camera of part P .
Output: Cross sections CS = [cs1 . . . csn] parallel to view plane and layered. Each cs

defined by sample point from skeleton bcs, normal n̂cs, and Boundarycs.
1 for ski ∈ Sk do // Extract cross sections along skeleton
2 bcsi ← ski
3 n̂csi ← local tangent direction at ski
4 Boundarycsi ← ShapeP

⋂
CUTTINGPLANE(bcsi , n̂csi)

5 csi ←CROSSSECTION (bcsi , n̂csi ,Boundarycsi)
end

7 for csi ∈ CS do // Align cross sections with view plane
8 if d̂P 6= n̂csi then
9 RotAxis← d̂P × n̂csi

10 PivotPt← bcsi
11 RotAngle←ANGLE (d̂P , n̂csi)
12 csi ←ROTATECROSSSEC (csi, RotAxis, PivotPt, RotAngle)

end
14 bcsi ← bcsi− SmallStep ∗i ∗ d̂P

end
16 return CS
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(a) Bounding Boxes & Skeletons (b) Cross Sections (c) Initial Positions (d) Rotated

Figure 4.7: The chair displaying the bounding box and skeleton for each part (a). Cross
sections sampled uniformly along the skeleton. The cross sections of each part as seen
from their corresponding local cameras (c), and after the flattening operation (d).

4.3.5 Part Camera Up-Vector Alignment

We next align the orientation of the local part cameras. In Section 4.3.3 we determined the view

direction for each part camera, d̂P , prioritizing the direction of max projected area for the part.

However, the up-vector orientation of the camera, ûP , was left ambiguous. Our approach takes

into account the master camera viewpoint and connectivity of parts within the 3D object. As

an initialization we use the vector field provided by Lopes et al. [13] – the vertical axis is the

master camera up-vector, ûM , the normal vector corresponds to the local camera view direction,

d̂P , and the tangent given by the vector field provides an initial guess for ûP (Appendix B.7).

The next step is to identify connection points between adjacent parts. For each part Pj , we

collect the set of adjacent partsAj . We assign a representative point aij ∈ R3 to each connecting

part Pi, for i ∈ Aj , computed as the centroid of the contact surface between Pj and Pi. The part

centroids cj and connection points aij are shown for the faucet in Figure 4.5(d).

We make a slight adjustment for the reference “center” point of the part, c̄j . If there is only

one connection point, the center of the part c̄j coincides with the mesh centroid. Otherwise the

average of all connection points is used. We then compute a rotation for each part camera’s

up-vector, ûj , such that the relative horizontal positioning between c̄j and aij is the same when
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(a) Input object (b) Centroid-green &
Connections-red

(c) Tabletop camera rotation

Figure 4.8: Alignment of the part camera up-vector. (a) Input object as seen from the
master camera. (b) Center and connections for the tabletop from the part camera view
(top) and master camera view (bottom). Angle computed so that horizontal distances of
connections, w, match the master camera view. (c) Final upright orientation of the local
camera, û′j .

viewed in the master and part camera image planes (Figure 4.5(f), 4.8). To achieve this we use

the following steps:

Recall that we are using orthographic cameras, where the object size in the image plane

does not diminish with depth. We define the vector v = aij − c̄j in world space. The horizontal

distance in the master camera image is given by w = v · x̂M , where x̂M is the x-axis of the

master camera viewport. We then determine the rotation angle θij of the camera frame around

the view direction d̂j . The angle is chosen such that v · x̂′j = w, where x̂′j is the x-axis of the

viewport for part camera j after rotation (Figure 4.8).

We repeat the same process for all connection points of the part and use the average rotation,

θ̄j = avg (θij)i∈Aj
as the final alignment of the up vector, û′j = R(−θ̄j)ûj . The rotation axis is

the viewing direction d̂j .

4.3.6 Compositing Part Renderings

The final stage is to combine the images from each local part camera to create the composited

illustration. We compute a depth value for each part, calculated as the distance from the master

camera location, pM , to the furthest vertex of the part’s bounding box (in the master camera
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coordinate frame). The order controls the layering with which images appear on the multi-

projection illustration. The default is to start from the farthest and move to the closest part. The

user may choose to change the ordering manually since this does not handle many occlusion

cases, e.g., where parts close to the camera completely occlude other parts.

(a) Input object (b) Centroids (c) Connections

Figure 4.9: Aligning part camera image layers. (a) The input model as seen from the
master camera. (b) If the centroids in the master camera view are used for aligning part
renderings, the resulting image is disconnected. (c) Instead, the connection points are
used for aligning image layers.

Initially all image layers are stacked such that their local frames align (i.e., image centers

coincide). We traverse the graph of all parts starting with the farthest part, where nodes are

the parts Pj , and edges are their part connectivity Aj . When we traverse the edge ji, i.e., a

connection from part Pj to its adjacent part Pi, we update the position of the image layer from

part camera i. The image layer is translated to enforce the part renderings to align at their

connection point (Figure 4.9). The translation vector is given by tj ∈ R2:

tj = projj(aij)− proji(aij)

where proji(aij) is the projection of connection point aij in the image plane of part camera i.

After applying the transformations, the connection points from different camera renderings

align on the image plane. Note, we assume no cycles exist, this procedure does not handle cases

where the connectivity of parts forms a multiply-connected graph rather than a tree

As a final post-processing step, we create an outline around each of the part textures of

1 mm thickness, and enforce a 3 mm wide gap between each part. This helps to differentiate
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Figure 4.10: Photograph of tactile illustration of the monitor, including a closeup view of
the base. Fabricated with microcapsule paper.

between parts, following BANA guidelines [315]. Renderings for the tactile illustrations of a

selection of objects can be seen in Figure 4.5(g) and Figure 4.14. Finally, we send the renderings

to the laser cutter to fabricate the tactile illustrations, examples can be seen in Figure 4.5(h) and

Figure 4.10.
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4.3.7 Designs for User Study 3

This section contains all materials for User Study 3: Evaluation. Materials include:

• Seven (7) 3D reference objects. Each object has three geometric variations for use in

the study. Modified parts are highlighted in green. All three versions were physically

fabricated with 3D printing.

• Tactile illustrations generated with our technique. Fabricated with microcapsule paper.

• Tactile illustrations designed following BANA guidelines [315] as a baseline. Fabricated

with microcapsule paper.

• An eighth example (jug) is provided which was used for training.

During the study the objects were presented in the following order:

1. Monitor 1

2. Table 1

3. Headphones

4. Chair

5. Monitor 2

6. Table 2

7. Faucet
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(a) Monitor 1 (b) Table 1

(c) Headphones (d) Chair

Figure 4.11: Objects 1–4 in User Study 3: Evaluation. For each object: (top) 3D refer-
ence model with variations; (bottom left) tactile illustration using BANA [315] guidelines
as baseline; (bottom right) tactile illustration using our technique. In each case the illus-
trations depict the middle reference object.
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(a) Monitor 2 (b) Table 2

(c) Faucet (d) Jug (training)

Figure 4.12: Objects 5–8 in User Study 3: Evaluation. For each object: (top) 3D refer-
ence model with variations; (bottom left) tactile illustration using BANA [315] guidelines
as baseline; (bottom right) tactile illustration using our technique. In each case the illus-
trations depict the middle reference object.The jug was used as a training example at the
beginning of the study.

4.4 User Study 3: Evaluation

We conducted a user study to evaluate the effectiveness of our novel tactile diagrams. The study

included an object recognition task, in which participants with near or total blindness were

invited to a controlled lab environment to identify a set of daily objects through the proposed

tactile illustrations.
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Figure 4.13: For each 3D object included in User Study 3: Evaluation, we created three
versions with minor geometric variations. Beige regions are identical among the three
versions; green regions have been modified. The models were 3D printed so that partic-
ipants could compare (by touch) the 3D objects depicted in the 2D tactile illustrations.
The tactile illustrations shown in Figure 4.14 correspond to the middle version in each
case.

Apparatus and Participants.

Our study consisted of 20 blind participants: 12 female, aged between 26 and 72, and 14

congenitally blind. Seven objects were used in the study, we chose common household objects

that would be familiar to the participants (in the order presented): monitor, square table,

headphones, chair, curved monitor, round table, and faucet (Figure 4.14). For each object, the

study materials included:

1. Three variations of the 3D reference object (Figure 4.13). All three versions were

physically fabricated using 3D printing.

2. One tactile illustration generated with our technique (Figure 4.14). Fabricated with

microcapsule paper (Figure 4.10).

3. One tactile illustration designed following BANA guidelines as a baseline. Fabricated

with microcapsule paper.

Including variations of the 3D objects allowed us to measure how well our illustration tech-

nique helps participants precisely perceive the 3D geometry information and recognize subtle

differences between the reference objects and their variations. To create variations of the 3D
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Figure 4.14: Resulting designs for tactile illustrations using our technique, with 3D input
models shown.

reference objects, each model was modified by either a replacement operation, subtraction, or

addition of parts. The variations of the objects are as follows (Figure 4.13):

• Monitor 1: changes in base design

• Table 1: leg design (rectangular vs. cylindrical cross section, and cylindrical with connec-

tors)

• Headphones: size of ear cushion and outer shape of earpieces

• Chair: curved vs. flat back, and presence of cushion

• Monitor 2: curved vs. flat screen and CRT style

• Table 2: number of legs and straight vs. tilted shape

• Faucet: number and shape of lever arms on handles

• Jug (training example): cross section shape of main container

Example materials for the chair are shown in Figure 4.15. Materials for all objects in the study

are included in the Appendix 4.3.7.

Task and Procedure.

The tactile illustrations were presented to our participants, whose task was to find the corre-

sponding 3D reference object or its variation. A baseline was included to allow us to measure the
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(a) Input object(middle) & variations (b) 3D printed objects

(c) Output from our pipeline (d) Laser cut tactile illustrations

Figure 4.15: Example materials for User Study 3: Evaluation. Participants are given
three variations of the object (a), produced by 3D printing (b). They are given one tactile
illustration style – either our new multi-projection style (c, left) or the BANA baseline
style (c, middle-right). Illustrations are produced using microcapsule paper (d). Partici-
pants are asked to identify which of the three variations matches the illustration. (Supple-
mental Materials for all materials used in study 3).

performance of our technique over the state-of-the-art. The baseline was produced by following

the Braille Authority of North America (BANA) guidelines [315]. Sample materials for the

chair object can be found in Figure 4.15.Participants were trained in how to interpret the tactile

illustrations using the jug example. The procedure was as follows:

1. Participants were given materials for one object at a time consisting of three variations of

the object (3D printed), and one illustration of “type A.”

2. The participant was asked to choose which one of the three object variations most closely

matched the illustration.

3. Steps (1) and (2) were repeated for all seven objects.

4. Steps (1)–(3) were then repeated using illustrations of “type B.”

For half of the participants “type A” was the baseline (BANA guidelines) and “type B” was our

illustrations. For the other half of participants the illustration type was reversed. We chose to
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Figure 4.16: User Study 3 results, shows mean success rate for matching tactile illus-
tration to correct 3D object. Results shown for average over all objects, and per object
success rates.

use only three variations of the reference object to avoid cognitive overload,this was determined

after running a small pilot study.

Our quantitative measures included matching rate, which measures the number of times

participants were able to correctly match a tactile illustration with the corresponding 3D object.

Qualitative observations were also collected to assess how easy it was for participants to

understand the 3D shape information shown in the tactile illustrations and identify the subtle

differences between them.

Observations.

We analyzed the data using a generalized linear mixed model for a comparison between the

baseline BANA illustrations and our technique, considering each response an individual sample.

The network includes two fixed effects: design and object, and a random effect: participant, and

is built on a family of binomial distributions. The variable object has seven levels (monitor 1,

table 1, headphones, chair, monitor 2, table 2, and faucet) and the design has two (BANA, our

technique). To compare success rates within each object we do Post-Hoc pairwise comparisons

on estimated marginal means and apply Bonferroni corrections [234].

The mean success rate in matching the correct 3D reference object to the tactile illustration
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Figure 4.17: User Study 3 results, shows mean success rate for matching tactile illustra-
tion to correct 3D object. Grouped by age of vision loss (self-identified).

was 58% for our technique versus 29% for the BANA baseline. We found that there exists a

significant difference in shape understanding among the two types of illustrations (χ2(1, N =

140) = 22.77, p < 0.005). Figure 4.16 shows the mean success rate over all objects, as well

as per object success rates. Confidence intervals are computed by standard error. There is

also a significant effect of Object (χ2(6, N = 140) = 31.55, p < 0.005). Post-hoc analysis

shows that higher success rates were observed for our technique for the majority of objects,

with monitor 1, chair, and faucet remarkably better, with an improvement of ≥ 45% in mean

success rate (all p < 0.005). Table 1, monitor 2, and table 2 also have large improvement (e.g.,

improvement of ≥ 15% in mean success rate), but without statistical significance. An exception

to this trend is the headphones where participants responded more accurately using the BANA

baseline (p < 0.05). Figure 4.17 compares results between congenitally (14) and late (6) blind

participants. Both groups show better success rate with our technique.

Although our results are promising, there were still misconceptions caused by our technique.

One observation was that overlapping parts were sometimes overlooked. For example, in our

illustration for table 1 (square top, Figure 4.14) one of the legs is entirely contained by the

tabletop. Several participants were unable to locate this leg, likely since the silhouette was not

easily discoverable.

The headphones were the one object with poorer mean success rate than the baseline. We
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found that participants were not using the infill textures to understand the shape of the earpieces,

but they were judging shape just by the outline which may have indicated a spherical instead

of cylindrical shape. Another consideration was the lack of symmetry in our illustration –

although identical, the two earpieces were shown from different views which produced different

silhouettes and seemed to confuse participants.

To understand user perception of our new illustration style, we conducted a usability survey

based on the System Usability Scale (SUS) [68]. With a maximum score of 100 we found

similar scores on average of 65 for our technique and 62 for the BANA baseline. This result also

indicates that participants tended to be open to new ideas and solutions for the improvement of

tactile illustrations.

At the end of the study we collected additional unstructured feedback from participants,

summarized here:

Infill textures Participants had positive feedback on the infill textures for both our technique

and the BANA baseline approach. Participants found the BANA textures useful for differentiat-

ing between different parts (2 users). In contrast, our textures were useful for understanding

shape details (2 users).

Participants generally liked the textures in our illustration technique, with two users saying it

is a consistent way to represent shapes, and four users saying the shape could be felt clearer/easier.

Other positive remarks were that the designs were “more detailed,” “interesting,” and that the

textures were “more tactile.” Specific use cases were suggested, including art objects in a

museum (e.g., statues), and for depicting architecture (e.g., Cape vs. Victorian roof styles or

different pillar styles). Three users raised concerns, mostly related to the clutter that the lines

created, which made the illustration feel “complicated” and “everywhere the same,” so that they

could not easily identify “where one piece starts and where it stops.”

Multiple viewpoints Participants generally appreciated that our technique created a single

unified illustration, “there was only one shape to look at.” Two participants commented that our

technique represents the shape more effectively, is more simplified, and conveys the object more
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efficiently. One participant commented: “If I had seen the diagrams [our technique] and not the

objects, but I was told that the diagram was a chair, then I could have interpreted it. But once we

moved to different angled views [BANA baseline] that became less and less something I would

be confident about.” However, three users found difficulties in interpreting our illustrations,

saying they looked more like an “artist drawing” and “more 3-dimensional,” and not knowing

the view was problematic.

Regarding the BANA baseline illustrations, four participants commented that it was difficult

to explore multiple views (e.g., top and side) which they later needed to match and compare.

E.g.: “in some of the views you did not see all the object, you did not understand what you were

looking at, you had to use both of them and kind of put them together or use what information

you could get from the one that made the most sense.” This response highlights the benefits of a

single illustration.

Fabrication issues One participant noted that he would like not only thickness differences in

lines, but also height differences, while another commented that he would prefer sharper lines.

4.5 Fabrication and Implementation Details

Implementation Details The skeleton extraction uses the CGAL implementation of the mean

curvature skeleton [399]. To create the renderings for User Study 2, we extracted lines using

Freestyle [156], making modifications manually when needed in Adobe Illustrator. We created

lines of 1 mm thickness with 3 mm wide gaps between different object parts and then modified

according to BANA guidelines [315]. To create the BANA baseline renderings for User Study

3, we follow the same approach, using five pre-made textures tested with a blind individual for

their identifiability. When creating illustrations with our technique for User Study 3, we created

an outline around each part texture using Adobe Illustrator. We set the texture line thickness at

0.5 mm, and the outlines and gaps are the same as User Study 2. As some manual steps were

used in creating the outlines, this post-processing stage prevented large-scale evaluation of our

pipeline.
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3D Reference Objects The 3D objects in User Study 2 were selected from online repositories:

archibaseplanet.com, archive3d.net, and www.thinginverse.com. For User Study 3, the 3D

reference objects were selected from the PartNet data set [295]. PartNet objects are pre-

partitioned and provided in up-right orientation. Variations of the objects were created using

Blender 2.79.

Fabrication Details The objects in User Study 2 were fabricated with a Form 3 SLA 3D

printer. The objects in User Study 3 were fabricated with a UPrint FDM 3D printer and Form 3

SLA 3D printer. The same printer was used for all variations of an object for consistency.

To fabricate the tactile illustrations we used microcapsule paper. The capsules expand under

heat application, which was applied with laser engraving. We used an Epilog laser cutter with

settings: 100% speed, and power ranging between 12% and 15%, with maximum machine

power being 60 W. Alternatively: 100% speed, and power ranging between 16% and 20%, with

maximum machine power being 40 W. Each image takes 20 min to 30 min minutes to complete.

4.6 Discussion

4.6.1 Limitations & Future Work

We have presented a new methodology for generating tactile illustrations. We introduced a

preliminary algorithm that integrates design considerations on tactile graphics motivated by

a set of formative studies. However, many opportunities exist for improving the technique

and experimenting with alternative stylizations. For example, further investigation could be

done into selecting optimal viewpoints for parts, and layering images appropriately to handle

occlusions. We also hope to scale up to more complex objects while maintaining a usable level

of detail. Future work should investigate how shapes that are not approximated well by 1D

skeletons can be represented (e.g., objects with concavities such as bowls). Future work can

also develop treatment for objects with cycles. Currently, each part is positioned to coincide

with its parent connection, and a part that closes a cycle is not taken into account.
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Furthermore, symmetry has been show to be a key characteristic of tactile shape percep-

tion [42], as well as from our own observation, and should be integrated into the design process

in future work. Similarly, our method could incorporate special handling of repetitions within

an object to communicate identical parts. Additionally, future work could incorporate other

tactile saliency properties, such as the functional tactile saliency metrics developed by Lau et

al. [231] which was based on grasping.

Our illustrations aim to convey shape characteristics that make designs distinct from one

another. Future studies could also test the effects of our illustration style on object recognition

tasks (e.g., recognizing ‘chair’ as the object category, rather than differentiating between

variations of an object). Further, an ablation study was beyond the scope of our study resources

but would be valuable as future work, for example, to study the effect of multi-projection

rendering with standard textures.

Our technique relies on a semantically segmented object. Skeleton-based segmentation

could be applied, e.g., Livesu et al. [257], Zhou et al. [484], Tagliasacchi et al. [400]. The

segmentation could also be obtained with machine-learning approaches, which have recently

shown improved performance over traditional approaches [199, 457].

Finally, other stylizations could be explored, such as exploded diagrams [239] which might

allow for better visibility of occluding parts, abstraction using characteristic curves [289] or

geometric primitives to handle more complex geometry, or abstractions such as skeletons to

emphasize topological relationships. We also see opportunities for integration with interactive

tactile graphics, e.g., combined with interactive audio feedback, dynamic markers [397], or

refreshable tactile graphics displays where low resolution pin-based stimuli will present new

challenges [63].

4.6.2 Conclusion

We have successfully built a general pipeline for the design of tactile illustrations to improve 3D

shape understanding for blind individuals. We have also designed a user study to evaluate the

effectiveness of the illustrations, which we implemented on a selection of common household
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objects. We are the first to create a systematic approach that can generate tactile illustrations

for objects with complex 3D geometry. We demonstrate promising results, showing significant

improvement compared to baseline guidelines for tactile illustration design.

Providing a tool that creates tactile illustrations is integral as a resource for the blind

community to allow them to gain access to visual information. For example, our illustrations

could be used as a tool to depict products, from furniture in a store catalog, to art pieces in a

museum, to object repositories for 3D printing. An exciting area of future work would be to use

our illustration algorithm as a language to build a design tool for the blind. As one of our study

participant mentioned: “One of the biggest difficulties blind people have is getting an idea out

of my head and into your head.”
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5
Summary and Future Work

In this thesis I present two works for 2D fabrication of images that cover two different tasks. For

the project discussed in Chapter 3, we implemented a fabrication-aware pipeline for the design

of watercolorized images, including an approach for the design of single and multiple continuous

color transitions (i.e., gradients). We also designed a repeatable fabrication procedure that is

coupled with the design process and succeeds in creating images with real watercolor pigments.

For the project discussed in Chapter 4, we proposed an algorithm for the design of tactile images

with improved shape understanding for the blind, and we tested the success of the images by

formatting a user study about shape understanding.

The first work proposes an image analysis pipeline for the design of woodblocks, which,

coupled with a fabrication process, results in controllable watercolor images. The input image is

broken down through our image analysis pipeline in a series of maps that reflect the placement of

paints. This pipeline consists of a series of extraction steps including: color palette, smoothness

values, relativily darker and lighter in color-brightness areas, and edges. The fabrication

process was the outcome of an experimentation with different materials, tools, and fabrication

procedures. The images succeed in resembling watercolor paintings, including multi- and

single-color gradients, while at the same time clearly conveying their content, as shown from

our informal user study.

The second work proposes a multi-projection rendering that more clearly depicts 3D shapes

through touch compared to images designed following standards in tactile illustration. The 3D
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object input is geometrically processed into sequences of cross sections, taking into consideration

its semantic segmentation. An analysis of the geometry of its segments and its whole determines

the set of camera positions. The cross sections are aligned to these cameras and rendered. The

complete image is composited using a multi-projection approach which aligns the multiple

camera renderings following the information of connectivity between segments and using

rotations and translations. The characteristics that such tactile images should possess are

gathered through our formative studies as well as reading material in fields related to touch

perception, such as cognitive psychology. The success of our tactile images is shown by a user

study we design and run in the local blind community, with respect to shape understanding.

Our works, being initial steps in our field that focus on watercolor and tactile fabrication, can

guide and inform future research. First, they will provide baselines. In watercolor fabrication, a

set of images that are commonly watercolor painted themes similar to those used in the paper’s

data set (e.g., a landscape, a portrait, an animal, and a flower), could be fabricated with other

approaches and compared in terms of effects with our approach. Also, for fabrication of tactile

images, a new design technique for illustration for shape understanding could compare their

results with our own, by running a study similar to the one presented here.

Two other main ways that our work could guide future research are: building upon our

pipelines to improve their efficiency and the quality of the designs, or exploring new design

spaces and a wider variety of designs. Section 5.1 gives examples of ways that the pipeline can

be improved to increase efficiency, Section 5.2 details different design approaches, Section 5.3

discusses novel design ideas, while Section 5.4 broadens the contributions of these works outside

their initial tasks.

5.1 Changes in Pipeline

Watercolorized Images While our image processing algorithm is simple to implement and

successfully extracts the corresponding maps and elements, other techniques may be able

to improve the results. For instance, Lin et al. [243] create color palettes based on a data

set of human-extracted color themes, human-extracted themes could embody color selection
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based on artists preference. Also, other pixel-level defocus techniques [478, 485] might lead

to more accurate smoothness maps. Similarly, several other options exist for computing a

semantic map [311, 425] which would lead in different image segmentations. The use of other

image morphology algorithms for edge extraction and vectorization [271, 275, 445] could create

differences in the details map. Specifically, for the edge guided polygon expansion, a clipping

algorithm such as [281] guiding a curve offset [459] which takes into account self-intersections

could be used.

Tactile Images In tactile images, in terms of fabrication, taking into account the way micro-

capsule expands and introducing half-toning [307], could lead to clearer illustration design.

In terms of design, we could experiment with other vector fields for the initialization of the

up-vector cameras, as well as with other skeleton extraction algorithms. Also, we could sample

different in place cross section rotations around the corresponding skeletal sections before their

layering, and choose a rotation that results in better visibility of the outline curves.

A common line of work would be to make both of these pipelines more automatic. For exam-

ple, regarding the fabrication of watercolor images, new image analysis techniques [25] could

exclude the need for user given input, e.g., a scribble for semantic segmentation. Implementing a

vectorization algorithm would also remove the need of using an independent software to process

the rasterized input images. Similarly, in the tactile pipeline, our technique relies on a semanti-

cally segmented object. Skeleton-based segmentation could be applied, e.g., [257,400,484]. The

segmentation could also be obtained with machine-learning approaches, which have recently

shown improved performance over traditional approaches [199, 457]. It might be possible to

design a vector field [130, 475] that would align the cameras without the need for the alignment

operation we followed.
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5.2 Changes in Design

Another direction for future work would be to investigate how the existing designs could be

improved.

Watercolorized Images Key work in watercolor design can address color management,

simulation, and abstraction and optimization.

Key directions regarding color focus on color mixing, color gradients, and color repro-

ducibility in different input sizes. As revealed in the informal user study, as well as other works,

e.g., Flagg et al. [132] which provided a color mixing tool for oil paints, color selection is an

important feature. Future work could include an automatic mixing tool for watercolor paints. To

account for the transparency of the medium and layering effects (e.g., glazing) that produce new

color hues when pigments overlap, the field can build upon the insights of Babaei et al. [33]

and Tan et al. [403] on color layering. Regarding color gradients, we used more or less diluted

paints. However, artists, in order to design gradients, use different color hues (cool hues or

complementary colors), which lead to the creation of gradients. This use of complementary

color paints could, for example, allow for the creation of even darker gradients, if the paints

are placed by a carefully designed woodblock. Regarding reproducibility, one area for future

work is the achievement of more detailed color reproduction if the goal is realism. A small

set of paints limits our ability to reproduce color details, which might negatively impact some

texture, e.g., the trees in the landscape. This can be mitigated with an increase in paint colors at

the expense of a longer printing process and more detailed annotation that is more complex to

produce. Finally, regarding fabrication of color gradients, we did not experiment with various

sizes in input images. We expect that parameters like the dilation radius need to be scaled

proportionally to the print size, but more thorough investigation is necessary.

Other key directions for future research that also need to be fabrication aware include

simulation, abstraction, inclusion of more water levels, and minimizing number of woodblocks.

One direction could be predicting the faithfulness of the fabricated prototype as a function of the

number of the colors, the amount of water, and the printing order, such as by using a simulation
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interface. In this way, we could also use natural watercolor diffusion not only to stylize blurred

areas with gradients, but also to approximate them.

Additionally, augmenting the abstraction of the print is of interest. For example, simplifica-

tion of the input image using non-photorealistic rendering or watercolorization techniques can

modify the abstraction and uniqueness of the print. An interesting avenue for future work could

be to identify characteristic elements of watercolor automatically, similar to the work of [116].

Another direction for future work is refining our diffusion model to support more levels between

our current ‘dry’ and ‘wet’ options, which would require a finer-grain analysis of the local image

smoothness. Finally, we have experimented with using woodblocks for more than one color to

simplify the printing process. Our early experiments done by hand are promising (Figure 5.1)

and suggest that it should be possible to design an algorithmic solution.

Figure 5.1: Manual combination of two (here) or more colors per block, result in a
smaller number of blocks and the automation is left as a direction for future work.

Tactile Images In tactile illustrations, many opportunities exist for improving the technique

and experimenting with alternative stylizations.

For example, further investigation could be done into selecting optimal viewpoints for parts,

and layering images appropriately to handle occlusions. Also, future work could scale up to

more complex objects while maintaining a usable level of detail. Future work should investigate

how shapes that are not approximated well by 1D skeletons can be represented (e.g., objects
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with concavities such as bowls). Future work can also develop treatment for objects with cycles.

Currently, each part is positioned to coincide with its parent connection, and a part that closes a

cycle is not taken into account.

Furthermore, symmetry has previously been shown to be a key characteristic of tactile shape

perception [42], as our user study also indicates, and should be integrated into the design process

in future work. Similarly, our method could be developed to incorporate special handling of

repetitions within an object to communicate identical parts. Additionally, future work could

incorporate other tactile saliency properties, such as the functional tactile saliency metrics

developed by Lau et al. [231] which was based on grasping.

Future design directions for tactile illustrations could be related to how other visual cues can

be substituted with tactile cues. For example, in vision, cues related to shadows, perspective

distortion, and occlusions play a role in shape understanding. Specifically, as occlusions help

understand depth, ideal approaches might not minimize or remove occlusions [124]. Approaches

that tactily annotate different occlusion types (e.g., containment, contact, and blocking) using

textures or a series of images that reveal where occlusions occur [22, 109, 377] might be

preferable. Similarly, connections might be sufficiently annotated with symbols and not with

actual connectivity [387].

Finally, other stylizations could be explored, such as exploded diagrams [239–241, 404]

which might allow for better visibility of occluding parts (Figure 5.2), abstraction using charac-

teristic curves [289] or geometric primitives to handle more complex geometry, or abstractions

such as skeletons to emphasize topological relationships. We also see opportunities for integra-

tion with interactive tactile graphics, e.g., combined with interactive audio feedback, dynamic

markers [397], or refreshable tactile graphics displays where low resolution pin-based stimuli

will present new challenges [63].

Another direction of future work, related to both watercolor and tactile illustrations, is

the careful placement of distortions that draw attention. For example, distortions can create

new styles by augmentation of semantic areas or color changes. Another type of research

could focus on drawing attention to parts of the fabricated image, similar to research in virtual
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Figure 5.2: Multi-projection exploded line drawings

images [431, 435], in which color hues and image distortions were used to highlight results,

and improve visibility. In tactile images, we noticed that proportions need not be accurate.

Therefore, resizing might be an important distortion to allow for better visibility of parts.

The next two sub-sections discuss ideas for future design in each of these two design spaces.

5.3 Exploring New Designs

Future work could also investigate new designs and design spaces.

While considering that 2D line-drawings have low success rates for object recognition, a

closely related design space which has not been researched is 2.5D models, which define a height

field over an image and resemble sculptural reliefs [446]. 2.5D models have been used in visual

pieces of art [27, 90, 206, 386, 388] and researched for that purpose in graphics [207, 386, 446].

They have also been used as tactile illustrations for the blind [73, 137, 137, 210, 346, 391].

Applying ideas from our project, such as annotating different parts with texture or curvature and

selecting camera viewpoints, might improve the quality of illustrations.
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Another direction of future work, related to both watercolor and tactile illustrations, could

help explore new designs. For each design-oriented project, the first step is for the researchers

to gain knowledge of the corresponding field. Experts need to understand the underlying design

procedure, identify common design and fabrication patterns, understand how the output results

from a given input, and think abstractly to adapt the design and fabrication processes for new

inputs. The process of acquiring skills in new design spaces is often slow and difficult. Because

of this, a more systematic way to identify good solutions without the need for researchers to

understand the design space would be extremely helpful.

One benefit would be the ability to create designs that are significantly different from already

created designs. For example, while the watercolor pipeline has parameters that change the

design, such as number of colors and the smoothness threshold, it cannot create significantly

different results. To this end, recently, neural network techniques try to approach previously

unexplored spaces. Generative networks can infer rules for the creation of new designs. This

has been applied to the design of, for example, caricatures [77], furniture [268], or artistic

portraits [464].

A second positive outcome would be a systematic exploration of the design space that

allows for improvement of the future designs. As Hertzmann discusses, non-photorealistic

rendering might allow scientific theories of art [176] to be inferred. For example, this may occur

by describing the outcome in terms of an objective function that will “maximize the desired

visual response in the viewer, subject to the constraints of the artistic medium” [176]. Accurate

reproduction of an image is not, by definition, the desired outcome of non-photorealistic

rendering, e.g., artists can exaggerate in terms of colors [374]; therefore, an evaluation of design

preference is still an unanswered question. At the moment, because of the unpredictable nature

of the watercolor material and the need for tactile images to be tested by blind individuals, the

design improvement is a demanding process.

One possible approach could be the use of networks, which would input and score designs.

Then, by slowly changing designs, new designs could be generated, e.g., by changing colors

in watercolor woodblocks, or by changing camera positions by rotations in tactile illustrations,

then scored, and later tested in real world settings. For example, evaluation for tactile images
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could happen in collaboration with a fine arts museum, while evaluation of watercolors could

occur in collaboration with a school of fine arts. This exploration of different design spaces

could lead us to the implementation of a more general framework for fabrication of different

types of images and inform us on how to analyze different illustration styles [140].

5.4 Interdisciplinary Collaborations

Fabrication works, being interdisciplinary by nature, greatly benefits by collaborations with

other researcher areas, as shown by the works in this thesis (Figure 5.3).

Artists could help us abstract ideas and rules for better image composition [148]. For

example, when scoring the training data set for the neural network, it would be useful to consult

with domain experts in order to create a data set that would be artistically complete, or to

help us separate different styles. Artists could also inform us about techniques that exaggerate

characteristics of shapes and might be of use for tactile images. And they could suggest new

artistic ways for the use of materials, such as the microcapsule paper which can detailed and

accurate.

For the continued development of tactile illustrations, researchers in cognitive science and

psychology could collaborate with graphics researchers to further improve upon the designs. For

example, studies for which the response of the individuals could be measured in terms of neural

firing could give more objective indications as to which illustrations are more successful in

shape understanding. Another avenue for inter-disciplinary collaboration could identify human

perceptual limitations. For example, researchers might be able to help in designing studies

to identify how many different parts can be conveyed accurately within a tactile illustration.

Ideally, this type of research could make tactile images of shapes more intuitive to understand.

The tactile imagery could be then used as a depiction of drafting tools for the blind, and in this

way, individuals with blindness could become, on their own, designers of artifacts.
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(a) Book arts workshop (b) Nesin mathematics village

Figure 5.3: Interdisciplinary collaborations allow to integrate ideas from different do-
mains. In this thesis, knowledge was shared by artists, such as print-makers (a) and
mathematicians (b), among others. [Photograph Sarah H. Smith ©(2018)] [Workshop,
Women in shape modeling, İzmir, Turkey, (2016)]

5.5 Conclusion

In this thesis, I presented two works in expert-domain fabrication of 2D images, one pertaining to

the use of watercolors and another to tactile illustrations. The approaches introduce, respectively

for the two tasks, systematic approaches for the image design using graphics techniques and

the materialization of these images using fast prototyping tools. For the first project, an image

analysis pipeline infers key information from an input image and designs stamps that apply

the watercolors on paper. For the second project, a mixed geometric and image analysis

pipeline extracts important information from the input 3D model, which is used to render, from

multiple viewpoints, cross sections that are transferred on low-relief paper. In both projects, the

fabrication, i.e., the transfer of the 2D images on the wood-stamps and on the microcapsule

paper, is achieved using a laser cutter. To test the performance of these new designs, we

interviewed people in the local art and blind communities, and we received positive feedback

regarding watercolor depiction and shape understanding from tactile images. We hope that these

two works can initiate more research in the corresponding fields, i.e., artistic image and tactile

image fabrication and in non-photorealistic image fabrication in large.
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A
Related Research

Here, I highlight three projects I was involved in that were published during my PhD. These

works, related to geometric modeling and analysis, helped inspire my approach to the tactile

project presented in the previous chapter. The first project, related to improving the quality in

3D printed objects, demonstrated the importance of viewpoint on the object display, while the

other two projects, on 3D printing of wind musical instruments and designing of 3D shapes

based on 1D skeletons, showed the importance of skeletons in shape understanding.

A.1 Viewpoints

In the first project, Zhang et al. [477], we computed viewpoints that improved the quality of

3D printed models by selecting printing direction. Printing direction affects the location of

support structures, which leave artifacts on the model after their removal. The quality of the final

model is then compromised when support structures are placed in visually important regions.

Our model for preference in 3D printing direction was formulated as a combination of metrics,

including area of support, visual saliency, smoothness preservation, and viewpoint preference.

As concerns the viewpoint preference, we followed the approach developed by Secord

et al. [372], which measures viewpoint preference based on human perception. A series of

attributes were computed and were then linearly blended. The attributes were: projected area

(a1), surface visibility (a2), viewpoint entropy(a3), silhouette length (a4), silhouette curvature
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(a5), silhouette curvature extrema (a6), max depth (a7), depth distribution (a8), mean curvature

(a9), Gaussian curvature (a10), mesh saliency (a11), above preference (a12), and eye placement

(a13). From these metrics, I implemented the algorithms relevant to Area attributes(a1-a3),

Silhouette attributes(a4-a6), Depth attributes(a7-a8), and Semantic attributes (a12-a13), but not

Geometric attributes (a9-a11) since they were already available. Of these metrics I focused on

shape characteristics that can be computed, and therefore perceived, directly on the image, using

simple line drawings and without prior knowledge on the object geometry(a1-a8).

We then used these attributes to score a printing direction. To do so, the final score of

viewpoint preference was obtained by combining the five most dominant attributes: projected

area, surface visibility, silhouette length, max depth, and above preference. To choose attributes,

we tested different attribute combinations and the weights provided by Secord et al. [372]. The

five most dominant attributes gave us more satisfactory results compared to other combinations.

In addition to the already existing attributes, one new attribute was implemented named user

preference(a14). This allowed us to modify this automatically computed score by considering

the viewpoint that the user preferred.

Below, I define each of the previously mentioned attributes and provide a short description

for their use. The input 3D objects are manipulated to be centered in the origin and fit in a unit

cube.

We use the depth buffer [448], DEPTH[] ∈ (0, 1)Image_Size, a matrix which contains a depth

value for each image pixel. Also, let bpixel be the set of pixels that occupy the background

{pixel|DEPTH[pixel] = 1}, and opixel be the set of pixels that occupy the object on the image

plane {pixel|DEPTH[pixel] < 1}, while total_surface is the total surface area of the image

plane.

Projected area (a1) is the number of pixels on the image plane that display the object, over

the total number of image pixels for a given viewpoint. This metric increases as more image

surface is occupied by the input object and is maximized when all image pixels are covered by

the object. To give some insight into why this metric matters for viewpoints, we can simply say

that this attribute penalizes images for which only a small portion of the image displays the
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Figure A.1: Perceptual attributes for the bunny model.

object of interest.

The metric is defined as a1 =
|opixel|

total_surface , i.e., the number of pixels that display the input

object (Figure A.1(a)).

Surface visibility (a2) is the surface area of all visible object polygons over the entire object

surface area. This metric increases as more surface of the input object is displayed on the image,

and is maximized when all object surface is visible. By containing a large object surface area in

the image, we succeed in achieving higher visibility for the object we are interested in.

For each triangle of the mesh, we compute its surface area AREAtri using Heron’ s formula

and its centroid centrtri, and we project the centroid to the image plane as seen from the

viewpoint which results in an approximate pixel location pixeltripr and its depth value on the

image plane dtripr . To be more precise, by saying “as seen from the viewpoint,” we are referring

to projection on the image plane applying the camera projection matrix where the camera is

placed at the input viewpoint. The metric is defined as a2 =
∑

tri∈VIS AREAtri∑
tri AREAtri , where VIS is

the set of visible triangles defined as VIS = {tri : |dtripr − DEPTH[pixeltripr ]| < Threshold}

(Figure A.1(b)).
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Viewpoint entropy(a3) defines a distribution over the visible polygons on the image plane. It

increases when more space is occupied by the object on the image and the rendered polygons

are evenly visible, and it is maximized once every visible polygon and the unoccupied area have

equal visibility. By using this measure, not only does projected area increase, but polygons,

that could be ignored in the surface visibility metric, are also taken into account for the metric

computation.

Here, for each visible triangle a probability is defined, which shows how much each visible

triangle occupies the total image space P (tri) = AREAtri

total_surface . Next, for each visible triangle and

the background, we add the above scores to compute the metric, i.e.,
∑

tri∈VIS P (tri)× log2 P (tri)+

P (background)× log2 P (background) (Figure A.1(c)).

Silhouette length (a4) defines the outline of the object on the image plane. It increases when

more details are uncovered and the corresponding parts become visible. While it is not known

when it is maximized, from our observations, it increases as more parts occupy the image plane

and do not coincide within it. Therefore, we use silhouette length to minimize part occlusions.

To measure the object silhouette length, we identify all limit pixels or lpixels, which are

pixels rendering the object on the image plane that have at least one neighboring bpixel. In a

row-by-row fashion, we mark sequences of consecutive lpixels. Let the number of pixels for

a consecutive sequence be l. We consider only the sequences that have l > 1: if only the

first or only the last sequence pixel has a single bpixel neighbor, then the sequence contributes

to the object silhouette, length equal to
√

(l2 + 1); if not only the first or last sequence pixel

has a single bpixel neighbor, then the sequence contributes length l. The contributing pixels

are marked as background pixels, and the same procedure is repeated in a column-by-column

fashion, without the limitation of l > 1. The metric a4 is computed by summation of the l values

(Figure A.1(d)). While there are already-implemented techniques for silhouette extraction, as

seen in the next attribute, we used our approach because it was more accurate.

Silhouette curvature (a5) defines the average curvature of the outline of the object on the

image plane. It increases as more curves of the object appear on the image plane. For a closed
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oriented silhouette the absolute curvature is greater than the 2π [83], given that the input mesh

is a single well-defined shape. The silhouette curvature is a number that depends on the 3D

input object curvature and genus, as well as the viewpoint selection. Large silhouette curvature

allows the image to depict not only large outlines, but parts that are curved and are represented

by a succession of hills and valleys.

For computation of curvature we use the silhouette, which is extracted using “findContours”

in OpenCV [379]. The reason for not using the technique of the previous attribute, is that

here the silhouette can be easily retrieved as n contours, i.e., n point sequences of size s:

∀i = 1 . . . n, Ci = [ci1, c
2
2, . . . , c

i
si

] which create the outline of the object. The computation of

curvature, based on [203], by integration over all the points, is then defined as the summation of

the clockwise positive angles for all consecutive three points in the contours (c−i , ci, c
+
i ), i.e.,

anglei = CLOCKWISE_ANGLE+(ci − ci−1, ci+1 − ci) (Figure A.1(e)).

Silhouette curvature extrema (a6) defines the extremity of curvature over the entire sil-

houette. It increases when points on the silhouette on the image plane have high sharpness.

Silhouette curvature extrema is maximized when consecutive contour segments with large

absolute angles and short distance are visible on the image plane. It gives higher importance in

the depiction of the highest curved protrusions and craters of the model.

For computation of the silhouette curvature extrema we use the same definition as in

a5. The integration over all contour segments results in summing for all i the quantity

angle2
i /arc_lengthi, where arc_lengthi = 0.5(|ci − ci−1|+ |ci+1 − ci|) (Figure A.1(f)). Here,

we note that we have preprocessed the contour points for the computations of a5 and a6, so that

every angle is strictly positive (nonzero) for every i.

Max depth (a7) defines the depth value of the pixel that appears to be the farthest away from

the camera. It increases as the distance between the closest and the farthest away visible points

on the image screen increases, given that the object is centered in the origin. The max depth

value is limited by the diameter of the object’s convex hall, but it cannot always approach that

limit, since the farthest away point, when looking from a viewpoint close to the diameter, is not
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always visible. This metric allows for depiction of a deep side of the model, and its computation

is straightforward: DEPTH[ arg max
px,DEPTH(px)6=1

DEPTH (px)] (Figure A.1(g)).

Depth distribution (a8) defines a distribution over the depth values of the visible pixels. It

increases as depth values of all pixels become more evenly distributed, and it is maximized

when exactly the same number of pixels is set to all different pockets of the histogram, i.e.,

uniform distribution of depths. Similarly to the previous metric, it allows for consideration of

depth of view, but not only with the appearance of one extreme value, but for the appearance of

wide range of depths.

Depth distribution is defined over a constant number of bins, |B|. The depth values,

that range from 0 to 1, fill the |B| bins. Specifically, the ith bin has the value vali =

1
|opixel|

∑
px∈opixel

1DEPTH[px]∈[ i−1
|B| ;

i
|B|)

. The metric of depth distribution is then defined as a8 =

1−
∑

i |B|−1val2i (Figure A.1(h)).

Mean curvature (a9), Gaussian curvature (a10), Mesh saliency (a11) These three attributes

are geometric characteristics of the object and are more focused on curvature. Mean and

Gaussian curvature are two different ways to compute how curved or flat the surface is at different

areas of a 3D model, while saliency is described as a measure that finds salient characteristics

through computing mean curvature at different resolutions of the model. However, I will not go

into details here since these geometric attributes did not inform the work in this thesis.

Above preference(a12) measures how much the view deviates from a visual canonical view-

point. To compute this metric, the model needs to be placed in its up-right position. The attribute

value is the same for all positions on any circle parallel to the model base. It is maximized at

viewpoints that are placed on the circle of 112.5o-latitude, which is 22.5o above the equator,

the equator has 90o-latitude. This attribute captures findings from psychological studies about

human vision preferences, indicating that people prefer to view objects at a higher angle from

their canonical position.

The up-right orientation of the object coincides with the z-axis. To compute the latitude for a

given viewpoint vi = (xi, yi, zi) we define vfi = (xi, 0, zi) and anglei = 180−ANGLE(vi, vfi),
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resulting in the latitude being φ = (90 + anglei) · 1yi<0 + (90 − angle) · 1yi≥0. For a

generic latitude φ, −90o ≤ φ ≤ 90o, the attribute of above preference is computed as: a12 =

exp{−(φ− µ)2/σ2}, with µ = 67.5o and σ = 45o (Figure A.1(j)). Please note that compared

to previous metrics, this metric does not take into account the object or its image depiction.

Eye placement (a13) measures how much the eyes are visible from different viewpoints. To

compute this metric along with the model, the area of the eyes is indicated on the model by

the user, meaning that the model has to display a face. The eye-placement attribute increases

as viewpoints approach full front views and is maximized when the entire eye area is visible.

This attribute again captures psychological findings that in contrast to inanimate object views,

animate object views need to consider the eyes in the illustration.

This metric is computed similarly to a1. The only difference is that instead of counting the

pixels that are object pixels, the pixels that display eyes are counted. To do so, eye surface is

color-coded with red, and therefore,the corresponding pixels can be retrieved by accessing the

color buffer. The metric is defined as a13 =
|eyespixel|
total_surface (Figure A.1(i)).

User preference (a14) defines a harmonic field on the viewing sphere influenced by a user

preferred viewpoint. For that purpose, in our paper, an interactive tool was developed to further

incorporate the viewing preference of a user into the perceptual preference score. The attribute

is maximized for the user preferred viewpoint where its value is 1. One example of viewpoint

preference computation can be seen in Figure A.2, where the user had a strong preference for

the front viewing direction of the bunny, which resulted in giving a boost to the values depicted

on the right side of the image (red means higher values).

By selecting a strongly intended viewing direction va, a Harmonic field H(d) is computed

on the sphere as∇2a14(d) = 0, s.t. a14(va) = 1, a14(−va) = 0 (Figure A.2 top right). Here,

note the attribute does not depend on the geometry of the model or the rendered image.

Viewpoint preference (V P5) In the 3D printing paper, this metric measures the preference

of a viewpoint based on the perceptual model introduced by Secord et al. [372]. The five most

dominant attributes were employed in our approach, which include projected area (a1), surface
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Figure A.2: Interactive modification of viewpoint preference – (top left) automatic com-
putation V P5(d), (top right) Harmonic field a14(d) according to user specification and
(bottom) the modified field by average and normalization. Blue denotes zero and red de-
notes one (highest preference). To display the overall distribution, the spheres are also
unfolded onto a rectangular region.

visibility (a2), silhouette length (a4), max depth (a7) and above preference (a12). The final score

of V P5 (Figure A.1(k)) is obtained by linear blending of these five attributes using the weights

provided [372]. When integrating User Preference, the metric was then updated by the average

of V P5(d) and a14(d) and then normalized.

After having explained the key attributes for the computation of viewpoint preference, I now

turn to a description of how this project helped me choose preferred viewpoints in my thesis

work.

Project Take-away This project helped inform the tactile illustration project (Chapter 4),

particularly, the identification of preferred viewpoints for tactile shape understanding. To create

tactile illustrations (Chapter 4), the viewpoint preference was obtained by using the silhouette

length attribute. This time the goal was not a user preferred visual viewpoint, but a viewpoint

that would result in less occlusions on the image plane, trying to identify how to compute a

canonical view that would allow for multiple part visibility. To identify which attributes were
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more relevant, we computed the above metrics for a set of objects, and we noticed that for all of

these metrics, the one that consistently gave us the best outcome was the maximization of the

silhouette length. This project also informed us that we could gain information about a model,

not only from its geometric-based characteristics but also from image-based characteristics,

which led to a fully image-based project, the watercolor, and a partially image-based project,

the tactile paper.

A.2 Skeleton

The following two projects emphasized the importance of skeletons for shape design, as well as

the ability to extract a skeleton from a given shape. Based on this experience, skeleton extraction

was a natural step for me to take when conveying 3D shape information with tactile images.

A.2.1 From Shape to Skeleton

Computer graphics researchers have developed numerous techniques for the extraction of

skeletons from a given shape. In this project, Umetani et al. [420], we designed and fabricated

3D objects with hollowed cavities that could be used as musical instruments. To provide a tool

to non-experts for the design of wind-musical instruments, Umetani proposed a fast simulation

algorithm for sound of free-form cavities. To design the free-form objects in Figure A.4, we

followed an approach from Igarashi et al. [184]. With this approach, the user first designs a

closed free-form curve on the computer screen, and the skeleton of this boundary curve is then

extracted. The extracted skeleton can be further used to manipulate the shape, e.g., by inflation.

Here, the process of a 3D free-form object is described. An outline is drawn on the 2D

image plane. If the outline is not intersecting, it is closed by drawing a straight line from the

starting point to the ending point. Points are then uniformly sampled on the closed outline.

The skeleton is then extracted according to the following process (a detailed description can be

found in Igarashi et al.):

1. Sample the closed curve in equally spaced points (outline of Figure A.3)
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Figure A.3: An example of skeleton extraction.

2. Perform a Delaunay triangulation on the closed curve area (blue lines of Figure A.3)

3. Compute the chordal axis of the shape (also referred to as the spine or the skeleton)

(non-blue lines of Figure A.3)

4. Fan the terminal non-significant triangles and prune the skeleton (non-pure red chordal

axis of Figure A.3)

After performing the skeleton extraction, the triangulation is refined, the skeleton is elevated,

and the internal edges of the triangles are elevated to fit quarter ovals. Specifically, the elevated

spine edges have height equal to the distance from the boundary, i.e., for every spine vertex,

the mean distance to its neighboring outline vertices is used to elevate the spine toward the

positive z-direction. The spine is then smoothed by adding the height of each spine vertex to the

two neighboring vertices and then dividing with the total number of vertex heights added, i.e.,

3 for internal vertices and 2 for external. Next, each edge connecting a spine s = (sx, sy, sz)

and a non-spine i = (ex, ey, ez) vertex are sampled in 4 equally-spaced segments, with internal

vertices vi, i = 1, 2, 3 with z-coordinates viz = 4−i
4

(sz+ez), y-coordinates: viy = my+sign(ey−

my) ·
√

5+2i
16
· |my − ey|, and x-coordinates vix = mx + sign(ex−mx) ·

√
5+2i

16
· |mx− ex|. The

newly created vertices are then triangulated by matching non-spine/non-outline edges in the

triangles. A symmetric shape on the negative z-half-space is then constructed, and the positive
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and negative z-shapes are glued on their seams. The shape is smoothed and can be further

manipulated, e.g., resized or cut. Finally, it is given as input to the simulation interface with the

aim of fabricating a 3D freeform wind instrument, e.g., Figure A.4. Using the fast simulation

approach of Umetani, we then predicted the resonance frequency. This frequency was used to

compose sound, using inverse FFT, which we provided as feedback to the instrument-design

interface. Finally, we fabricated the instruments, using 3D printers, and compared the resonance

frequency between the simulated and the recorded sound.Now, having finished a description of

the technical information about the wind musical instrument project, I explain how this project

informed my approach to 3D shape handling for my thesis research.

Figure A.4: Designed musical instruments which were designed based on the skeleton
extracted from a 2D closed curve.

Project Take-away This project informed me about how important the meshing can be on

the results of an algorithm. Specifically, the proposed algorithm is influenced by how well the

object is meshed, and does not allow modifications which change the number of vertices on the

original mesh. Specifically, while in the beginning we planned to incorporate the ability to cut

objects in the user interface, we later noticed this would not be possible. Similar to this work, I

noticed in later projects, such as the tactile illustration project, that a well-defined and with nice

flow as input achieves more accurate results for many algorithms, including skeleton extraction.

Also, the importance of skeleton extraction was highlighted. During the wind musical

instrument project, the skeletons were extracted from a 2D rather than a 3D shape. As this

technique could not be directly applied to the new project for which the shapes were 3D, we
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used a completely different algorithm [407] that was already available. However, one approach

to apply this technique to 3D shapes could be using multiple views from a part, extracting

skeletons for each 2D view and constructing the skeleton in the 3D space using some averaging

or heuristic step, e.g., the maximum silhouette from the previous paper.

A.2.2 From Skeleton to Shape

Computer graphics have also used skeletons as a starting point for shape design [184]. The

approach we took in the third project, Panotopoulou et al. [322], thus allows for the creation of

a 2-manifold mesh of surfaces of high genus, starting from a schematic description of the shape,

the skeleton (Figure [390]).

The aim of our project was to construct a quadrilateral mesh around a skeleton that was as

coarse as possible, similar to a scaffold on which a surface is built. Such a mesh provided the

first step for defining a joint surface representation for a skeleton-based shape; the scaffold quads

can be refined by subdivision to fit a regular quad mesh to a surface shape, as in [422]. Our

construction was optimal in the sense that it only consists of quads, in contrast to other methods

of constructing meshes from skeletons which also use triangles [64, 195, 422]. In addition, our

method was minimal in the sense that it is not possible to construct a coarser quad mesh of the

same skeleton with uniform sections. In other words, every section consists of the same type

of polygon (i.e., uniform sections), such as triangle, quad, or hexagon. Finally, we presented a

selection of examples of skeletons for which we generated a scaffold with the described method

(Figure A.6).

A skeleton is defined by its topology and its geometry. The topology is given by a simple,

unweighted, undirected and connected graph G = (V,E). Here, V denotes the set of vertices,

and E denotes the set of edges. Each vertex v of V is associated with a point pv in R3 and a

radius rv > 0, which defines a sphere centered at pv. In other words, a skeleton is defined as the

triple (G, p, r), where

• G = (V,E) denotes the graph defined above,

• p : V → R3,
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(a) A branch point with
valency 3

(b) Partition of top quad
to two quads

(c) Propagation of quads on skeleton branches (d) Generated SleevesgenSleeving

Figure A.5: The two main steps of the algorithm: Partition (top) and Sleeving (bottom).

v 7→ pv is the graph embedding, i.e., an assignment of unique positions from R3 to each

vertex of the graph, and

• r : V → R+,

v 7→ rv with rv denoting the radius associated to the vertex v ∈ V .

Consequently, any edge of the graph G is embedded as a line segment of R3. Edges are assumed

to intersect only at endpoints. We furthermore assume that, outside the spheres centered at the

vertices, the line segments are far enough from each other for the scaffold not to intersect. In this

project, we also assume that the spheres defined on the embedded graph do not intersect. There

does not seem to be a large obstacle to treating this case, as shown in some of the examples.

We distinguish between the so-called joints, branch points, and extremities: The image

in R3 of a vertex of valency 2 (respectively 1) is called a joint (respectively an extremity). A

branch point is the image pv of a vertex v of valency 3 or more. Together, we call the joints,

the extremities, and the branch points skeleton nodes (or simply nodes, where it is clear from

context).

For a given skeleton (V,E, p, r), a scaffold is a closed orientable polyhedral surface enclos-
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ing the union of line segments defined by the skeleton, while being homotopically equivalent to

it. The scaffold we construct is a quad mesh, the faces of which we call scaffold quads. Each

scaffold quad is associated to a single skeleton edge and to each skeleton edge are associated

exactly 4 scaffold quads (a sleeve). Our construction of a minimal scaffold for a skeleton consists

of two main steps:

Partition: For all branch points pv, partition the sphere Sv centered at pv and with radius rv,

according to the issuing branches. In this step, the spheres are partitioned into quadrilateral

faces, called spherical quads (yellow quads in Figures A.5(a), A.5(b)). Each spherical

quad face is intersected by a single line segment joining the branch point to a neighbor

vertex.

Sleeve: With a depth first search order, starting from any branch point or extremity, sleeve all

the branches. In this step, we compute a propagated spherical quad, for every joint (i.e.,

skeleton node of degree-2) following the DFS order (Figure A.5(c)). We use a heuristic

alignment for the joints or extremities connected to a branch point, and the rotation

minimization algorithm for all remaining skeleton nodes. We use these quadrilaterals

surrounding the nodes of the skeleton to mesh every edge of the skeleton using four quad

faces. Finally, we close the mesh at extremeties (Figure A.5(d)).

Having explained the technical information regarding the scaffolding of a skeleton, I next

explain how this project impacted my decision in using skeletons for the tactile project in this

thesis.

Project Take-away Compared to the musical instrument project, this project since it was

used to describe 3D shapes presented a stronger insight on why a relationship between a surface

model and its skeleton can be one to one. The project strengthened the idea that topological

information, and specifically skeletons, is of great importance in graphics research in general,

and more particularly for the concise description of 3 dimensional models. This concise

graphical description was the goal of the tactile project, since touch, compared to vision, has a

much more limited bandwidth to process information on paper.
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(a) Skeletons (b) Meshes

Figure A.6: Scaffold meshes generated (right) by input skeletons (left).

A.3 Key-Points

To summarize, my previous graduate work in computer graphics, even though not directly

applied to my thesis, gave me insight into the fabrication process, and most importantly,

influenced my approach to the watercolor and tactile projects. As seen in this chapter, three

key takeaways are: the importance of information that a 2D image conveys, the complexity of

viewpoint selection for 3D models, and the importance of skeletons in shape analysis.
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B
Supplemental Material

B.1 Watercolor Woodblock: Shading Algorithm

We build an associated neighboring graph where nodes represent superpixels and edges indicate

pixel boundaries on the image with weights that represent color intensity closeness between

superpixels. To build the shadow block corresponding to a color region, we proceed as follows:

1. Compute superpixels, sets of neighboring pixels in the gray-scale map image that have

the same gray intensity value. Next, Process every consecutive color region of the color

map separately.

2. Initialize the set of shadow superpixels with the locally darkest superpixels, are all the

superpixels that all their neighbors have paler or equal intensity values.

3. Build the set of candidate superpixels as the superpixels not selected yet with brightness

less than 1.1 of the brightness of the color region.

4. Define a graph over the superpixels as following: Every superpixel represents a node in

the graph. There is an edge between any two nodes iff the corresponding superpixels

have at least one neighboring pixel. The edges are weighted with the difference of the

brightness values between the two superpixels.

5. Expand the shadow superpixels to the closest neighbor superpixel in the graph. Update
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the graph by merging the two nodes. Update the edges and their corresponding weights,

according to the brightest value of all the superpixels included in the expanded superprixel.

6. For every superpixel if there is no candidate or if the number of pixels of the superpixel is

greater or equal to 20 pixels, stop expanding.

B.1.1 Details

To remove small details, we perform a series of morphological operations on the images with a

disk of specified radius. The radius r is used to define a disk of total size 2× r + 1 in OpenCV.

Given that all our images are of size 800 pixels× 600 pixels, 1 pixel radius corresponds to

approximately 0.25 mm radius.

We smooth the input image with an open followed by a close operation of radius 0.25 mm.

For the darkest superpixels (Wet Woodblocks - Shading Woodblocks - Local Minima) to compute

the gray-scale map we use k-means for k = 30 gray values on the gray-scale input photograph.

We then smooth the image with an open followed by a close operation of radius 0.5 mm. We

shrink the water area of the water map with an erode operation of radius 0.25 mm and we remove

the dry area. To compute the gray-scale map for the details superpixels (Dry Woodblocks -

Details minima) and the brightest superpixels (Wet Woodblocks - Shading Woodblocks - Local

maxima), we use k-means for k = 50 gray values. We smooth the gray-scale map with a close

operation of radius 0.25 mm. We process the entire image, differently than algorithm’s Step 1.

For the brightest superpixels, we consider the local maxima, which have color values greater

than 220 (gray channel ∈ [0, 255]), Steps 2 - 3. Also, we do not expand, eliminating Steps 4-6.

B.2 Ring Location Sampling

We restrict the master camera up-vector to the up-vector of the up-right origin placed object,

ûM = (0, 0, 1), and sample master camera locations loc that lie on the origin centered ring

∀(x, y, z) ∈ R3
[(
x2 + y2 = 10 ∧ z = 0

)
=⇒ loc(x, y)

]
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B.3 Negative y Location Restriction

After translating the master camera at the computed location, found from the maximum

silhouette computation Section A.1, we point the camera at the origin [55, 105] using a standard

track-to operation. Following we rotate the object and the master camera the same horizontal

angle. The angle makes the master camera coincide with the negative y axis and is rM =

SignedAngle(loc, axis-y−), while axis-z is the rotation axis.

B.4 Canonical Coordinate Frame

To compute the canonical coordinate frame for each part, we first translate the centre of the part

to the origin. We then perform eigen-decomposition on the covariance matrix of the vertices,

which results in three eigenvectors, the axes of the local canonical coordinate frame.

Given the part vertices vi, i ∈ {1 . . . n} = I , we define the covariance matrix Cov =

TrvᵀTrv, where the matrix Trv ∈ Rn×3, with Trvi,∗ = ti, ti ∈ R3, ti = vi − cp, and

cp =
(Σn

1 vi)

n
. Next, using a standard package [370] we find the eigenvectors of the square matrix

C, named ~ev1, ~ev2, ~ev3 ∈ R3, which constitute the three axes of the canonical frame for the

corresponding part.

B.5 Canonical Bounding Box

To compute the bounding box for the origin centered part, with vertices T , aligned with the

canonical frame ~ev1, ~ev2, ~ev3, as defined in Appendix B.4, we compute the box vertices.

The eight box vertices are

The eight box vertices are

box := {min
R

(x),max
R

(x)} × {min
R

(y),max
R

(y)} × {min
R

(z),max
R

(z)}

with R := { (xi, yi, zi) | (xi, yi, zi) = Rot ∗ ti, ti ∈ rows(Trv), i ∈ I } being the set of rotated

vertices, where Rot =

(
~ev1 ~ev2 ~ev3

)ᵀ

∈ R3×3 is the rotation matrix, rows() the set of
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row vectors of the given matrix, and max
R

, min
R

: {x, y, z} 7→ R, functions that return the

largest and the smallest coordinates from the set of vertices R, e.g., max
R

(x) = max{xi |

∀i ∈ I, (xi, yi, zi) ∈ R }.

B.6 Part Viewing Direction

To select which box side to use as the part camera viewing direction, we take into account the

skeleton, the area of the side, and master camera placement.

For a given part centered in the origin, let B := {b1, b2, b3} be the set of the three perpendic-

ular box sides with normals { ~ev1, ~ev2, ~ev3}, and S := {~si | i ∈ {1 . . . k} } the directions of the

skeletal segments. We choose two of the sides that align well with the skeleton, by discarding

the less orthogonal to the skeleton side bd ∈ B:

d = argmaxi∈{1,2,3}

∑
s∈S min(|angle(~s, ~evi)|,

∣∣angle( ~−s, ~evi)
∣∣)

k

where angle(~v1, ~v2) returns the angle between two vectors. Next, the normal of the se-

lected box side, evs, is restricted so that the part camera is placed on the negative y half-

space, resulting in the part camera viewing direction d̂P . The index is computed by s =

argmaxi∈{1,2,3}−{d} area(bi), where area returns the surface area of the given rectangle. To

implement the correct camera direction, we rotate the camera and make its viewing direction

coincide with the d̂P using a standard track-to operation.

B.7 Up-Vector Initialization

The part camera location is a point on the surface of the sphere centered at the corresponding

part, with radii direction from the point to the sphere center d̂P . The corresponding up-vector

will then be a tangent vector on the surface at this point. The up-vectors are defined for all points

on the negative y hemisphere, should change smoothly from point to point, and should follow

the up-right orientation of the object. In other words, these vectors constitute a vector field on

the sphere. For our initial guess for the up-vector field, we use the vector field provided by Lopes
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et al. [13], Figure B.1. Specifically, the part camera up-vector is ~uP = −(2 ∗ ĥ.y ∗ ĥ.z),−(−2 ∗

ĥ.x ∗ ĥ.z), 1− (2 ∗ ĥ.z ∗ ĥ.z), where ~h =

(
max{d̂P .y − 1, d̂P .y + 1}, d̂P .x, d̂P .z

)
.

Figure B.1: The vector field, green arrows, we use to initialize the up-vector for the part
cameras. It gives reasonable initial renderings.

To make the current up-vector û of the origin centered part camera coincide with the found

ûP , we rotate the part camera around the viewing direction d̂P .

We translate the part from the origin back to its original position vi, with vi = ti + cp

(Appendix B.4), and translate the camera at the center of the part cp. We move the part camera

away from the part, distance equal to dst = ‖pM − cp‖ so that the position of the part camera

is cp − dst ∗ d̂p.
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[334] M. Piovarči, D. I. W. Levin, D. M. Kaufman, and P. Didyk. Perception-aware modeling

and fabrication of digital drawing tools. ACM Trans. Graph., 37(4), July 2018. DOI

10.1145/3197517.3201322. Citation on pages 2 and 69.

[335] P. Pjanic and R. D. Hersch. Color imaging and pattern hiding on a metallic substrate.

ACM Trans. Graph., 34(4), July 2015. DOI 10.1145/2766944. Citation on page 26.

[336] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-time hatching. In Proceed-

ings of the 28th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’01, pages 581–, New York, NY, USA, 2001. ACM. Citation on page 28.

[337] R. Prévost, A. Jacobson, W. Jarosz, and O. Sorkine-Hornung. Large-scale painting of

photographs by interactive optimization. Computers & Graphics, 55:108–117, Apr. 2016.

DOI 10.1016/j.cag.2015.11.001. Citation on page 25.

[338] G. Puglisi and S. Battiato. Artificial mosaic generation. In Image and video-based artistic

stylisation, pages 189–209. Springer, 2013. Citation on page 22.

171

http://dx.doi.org/10.1145/3072959.3073701
http://dx.doi.org/10.1145/3072959.3073701
http://dx.doi.org/10.1145/2602140
http://dx.doi.org/10.1145/3072959.3073695
http://dx.doi.org/10.1145/3197517.3201322
http://dx.doi.org/10.1145/2766944
http://dx.doi.org/10.1016/j.cag.2015.11.001


[339] P. Rademacher. View-dependent geometry. In Proceedings of the 26th Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, page 439–446, USA,

1999. ACM Press/Addison-Wesley Publishing Co. DOI 10.1145/311535.311612. Citation

on page 72.

[340] P. Rademacher and G. Bishop. Multiple-center-of-projection images. In Proceedings

of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIG-

GRAPH ’98, page 199–206, New York, NY, USA, 1998. Association for Computing

Machinery. DOI 10.1145/280814.280871. Citation on page 73.

[341] V. S. Ramachandran. Perception of shape from shading. Nature, 331(6152):163–166, jan

1988. DOI 10.1038/331163a0. Citation on page 34.

[342] S. Rasool and A. Sourin. Tangible images. SIGGRAPH Asia 2011 Sketches, SA’11, 12

2011. DOI 10.1145/2077378.2077430. Citation on page 28.

[343] P. Ré. On my drawings and paintings: An extension of the system of their classification.

Leonardo, 14(2):106–113, 1981. Citation on page 20.

[344] B. Reeves, C. Crawford, B. Jones, G. Rousseau, and J. Wright. Removable applicator

assembly for applying a liquid layer, 1998. US Patent 5,808,645, Online at https:

//www.google.com/patents/US5808645. Citation on page 61.

[345] C. Regg, S. Rusinkiewicz, W. Matusik, and M. Gross. Computational highlight hologra-

phy. ACM Trans. Graph., 29(6), Dec. 2010. DOI 10.1145/1882261.1866192. Citation on

page 26.

[346] A. Reichinger, S. Maierhofer, and W. Purgathofer. High-quality tactile paintings. J.

Comput. Cult. Herit., 4(2), Nov. 2011. DOI 10.1145/2037820.2037822. Citation on

pages iv, xix, xx, 7, 16, 29, and 108.

[347] A. Reichinger, M. Neumüller, F. Rist, S. Maierhofer, and W. Purgathofer. Computer-aided

design of tactile models. In K. Miesenberger, A. Karshmer, P. Penaz, and W. Zagler, edi-

172

http://dx.doi.org/10.1145/311535.311612
http://dx.doi.org/10.1145/280814.280871
http://dx.doi.org/10.1038/331163a0
http://dx.doi.org/10.1145/2077378.2077430
https://www.google.com/patents/US5808645
https://www.google.com/patents/US5808645
http://dx.doi.org/10.1145/1882261.1866192
http://dx.doi.org/10.1145/2037820.2037822


tors, Computers Helping People with Special Needs, pages 497–504, Berlin, Heidelberg,

2012. Springer Berlin Heidelberg. Citation on page 14.
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