Bayesian Inference for Discrete Time Series via Tree Weighting

I. Kontoyiannis, A. Panotopoulou, M. Skoularidou Department of Informatics, Athens Univ of Econ & Business

3-7 September 2012

IEEE Information Theory Workshop (ITW) 2012

Lausanne, Switzerland

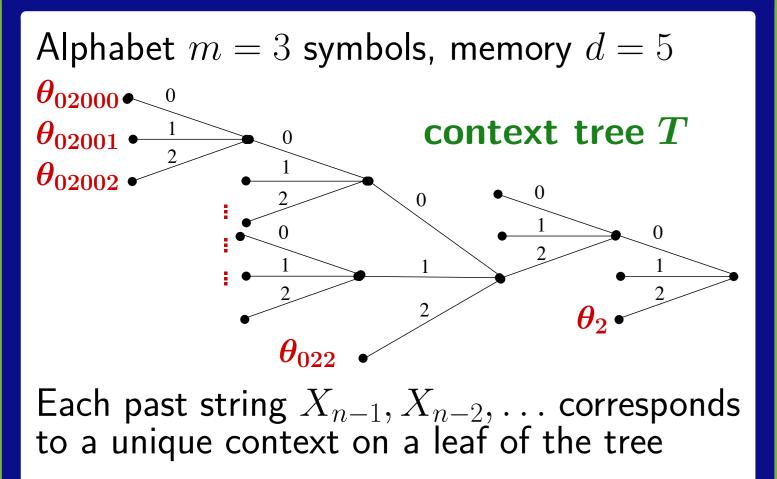
Variable Length Markov Chains	Bayesian Modeling	Experimental Results: IID Data
Markov chain: $\{X_n\}$ with alphabet $A = \{0, 1, \dots, m-1\}$	A NEW Prior on models Given m, D , for each $\alpha \in (0, 1)$ let	IID binary data $X_{-D+1}, \ldots, X_0, X_1, X_2, \ldots, X_n$ Distr Bern(1/20), length $n = 50000$ bits
Memory length <i>d</i> : $P(X_n X_{n-1}, X_{n-2},) = P(X_n X_{n-1},, X_{n-d})$	$\pi_D(T) = \alpha^{ T -1}\beta^{ T -L_D(T)}$ where $\beta = 1 - \alpha^{m-1}$; $ T = \#$ leaves of T ;	<i>k</i> -MAPT Find the top $k = 5$ models, with max depth $D = 15$
Distribution : To fully describe it need to specify m^d conditional distributions	and $L_D(T) = \#$ leaves at depth D Prior on parameters	

 $P(X_n|X_{n-1},\ldots,X_{n-d})$ one for each context (X_{n-1},\ldots,X_{n-d})

Problem m^d grows very fast e.g. m = 8 symbols & memory length d = 10needs $\approx 10^9$ distributions

Idea Use variable length contexts described by a context tree T

VLMC Example



The distr of X_n given the past is given by the distr of that leaf

E.g. $P(X_n = 1 | X_{n-1} = 0, X_{n-2} = 2, X_{n-2} = 2, X_{n-3} = 1, ...) = \theta_{022}(1)$

Given a model (context tree) Tthe parameters $\theta = (\theta_s; s \in T)$ are taken to be independent each with $Dirichlet(1/2, \ldots, 1/2)$ distr:

$$\pi((\theta_s; s \in T) | T) = \prod_{s \in T} \frac{\Gamma(m/2)}{\pi^{m/2}} \prod_{j \in A} \frac{1}{\sqrt{\theta_s(j)}}$$

Likelihood Given T, θ , the likelihood of $X = X_1^n$ is: $f(X|\theta,T) = \prod_{s \in T} \prod_{j \in A} \theta_s(j)^{a_s(j)}$

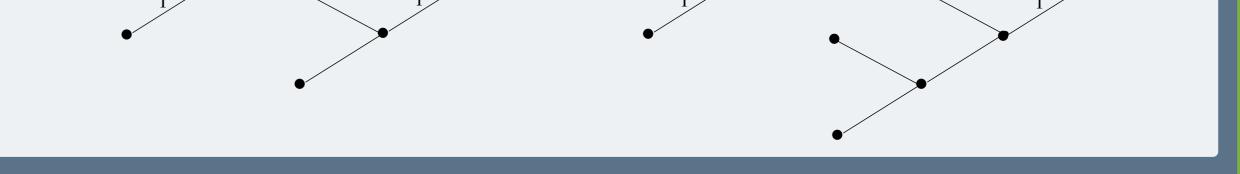
The Goal of Bayesian Inference

Determine the **posterior distributions**: $\pi(\theta, T|X) = \frac{\pi_D(T)\pi(\theta|T)f(X|\theta, T)}{\pi(\theta|T)f(X|\theta, T)}$ f(X) $\pi(T|X) = \frac{\int_{\theta} f(X|\theta, T) \pi(\theta|T) d\theta}{f(X)}$

Main obstacle Computation of the marginal likelihood:

 $f(X) = \sum_{\sigma} \pi_D(T) \int_{\theta} f(X|\theta, T) \pi(\theta|T) \, d\theta$

E.g. the number of models in the sum grows doubly exponentially in D



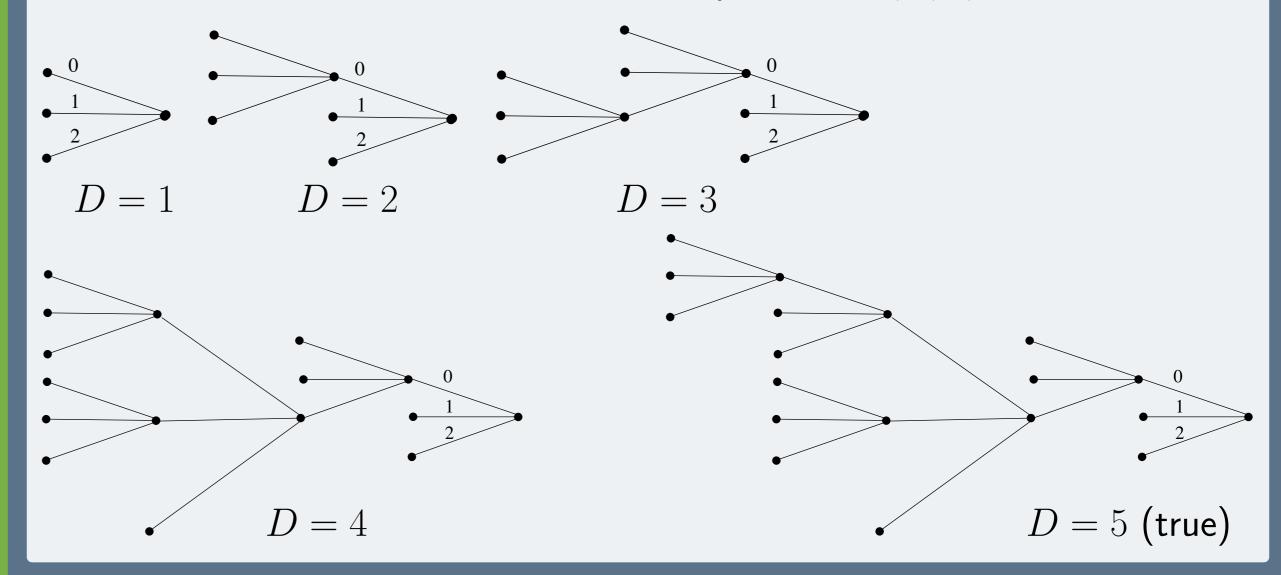
MAPT for the Earlier 5th-order VLMC

5th order VLMC data

 $X_{-D+1}, \ldots, X_0, X_1, X_2, \ldots, X_n$, alphabet size m = 3Distr VLMC as before (last MAP tree), data length n = 80000 symbols

MAPT

Find the MAP models with maximum depth D = 1, 2, 3, ...



The VLMC Likelihood

Likelihood Given a model (context tree) T and parameters $\theta = (\theta_s; s \in T)$ the likelihood of X_1^n is: $f(X_1^n | X_{-D+1}^0, \theta, T) = \prod_{s \in T} \prod_{j \in A} \theta_s(j)^{a_s(j)}$ where $a_s(j) = \#$ times j follows s in X

VLMC Advantages

 \rightarrow E.g., above with memory length 5, instead of $3^5 = 243$ conditional distributions only need to specify 13!

For an alphabet of size m \rightarrow and memory depth D there are m^D contexts \Rightarrow potentially huge savings

→ Determining the underlying context tree of an empirical time series is of great scientific and engineering interest

Motivation & Earlier Results

The Marginal Likelihood Algorithm

[formerly known as CTW] Given Data $X = X_{-D+1}, \ldots, X_0, X_1, \ldots, X_n$ alphabet size m & max model depth D

 \triangle **1.** [*Tree.*] Construct a tree with nodes corresponding to all contexts of length $1, 2, \ldots, \overline{D}$ contained in X

 \triangle **2.** [Estimated probabilities.] At each node s compute the a_s and

 $P_{e,s} = \frac{\prod_{j \in A} [(1/2)(3/2) \cdots (a_s(j) - 1/2)]}{(m/2)(m/2 + 1) \cdots (m/2 + n - 1)}$

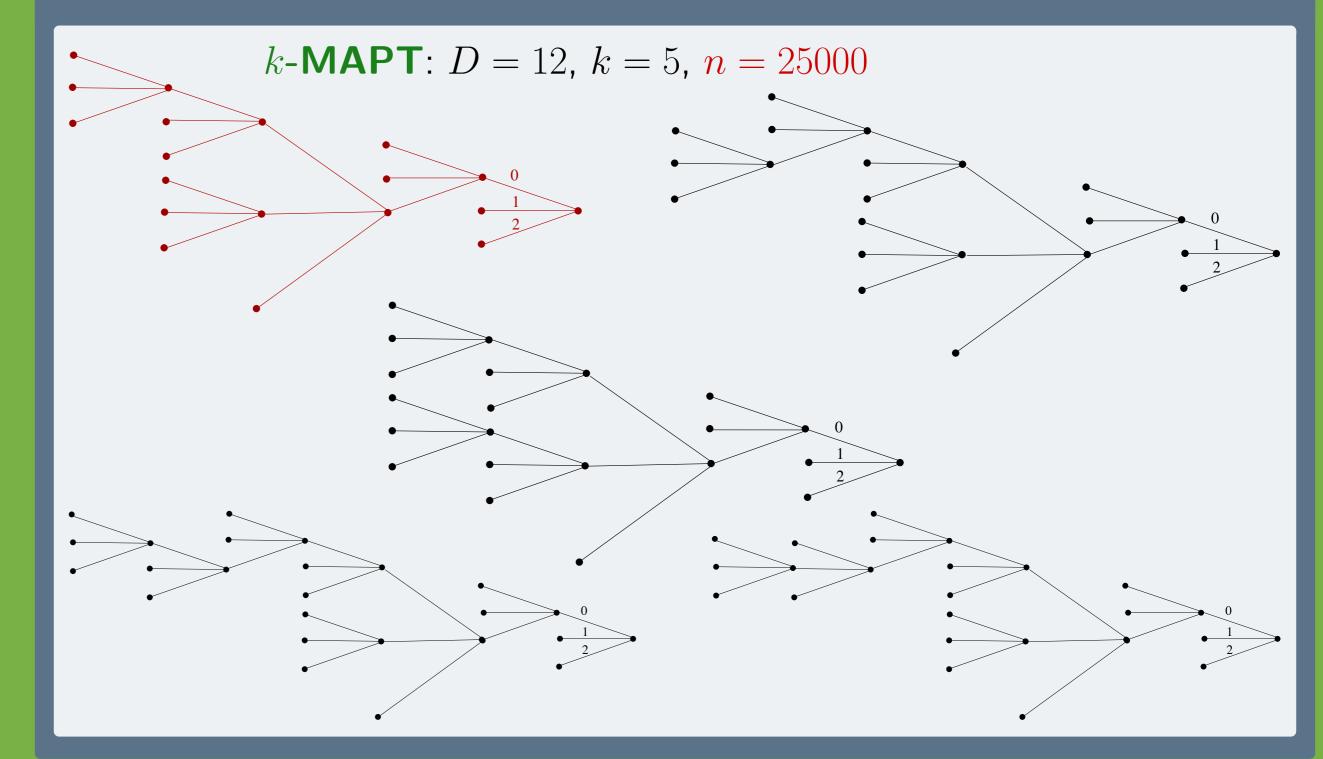
 \triangle **3.** [Weighted probabilities.] Let $\rho = 1 - \alpha^{m-1}$; at each node s compute $P_{w,s} = \begin{cases} P_{e,s}, & s \text{ a leaf} \\ \rho P_{e,s} + (1-\rho) \Pi_{j \in A} P_{w,sj}, & \mathsf{o/w} \end{cases}$

Theorem

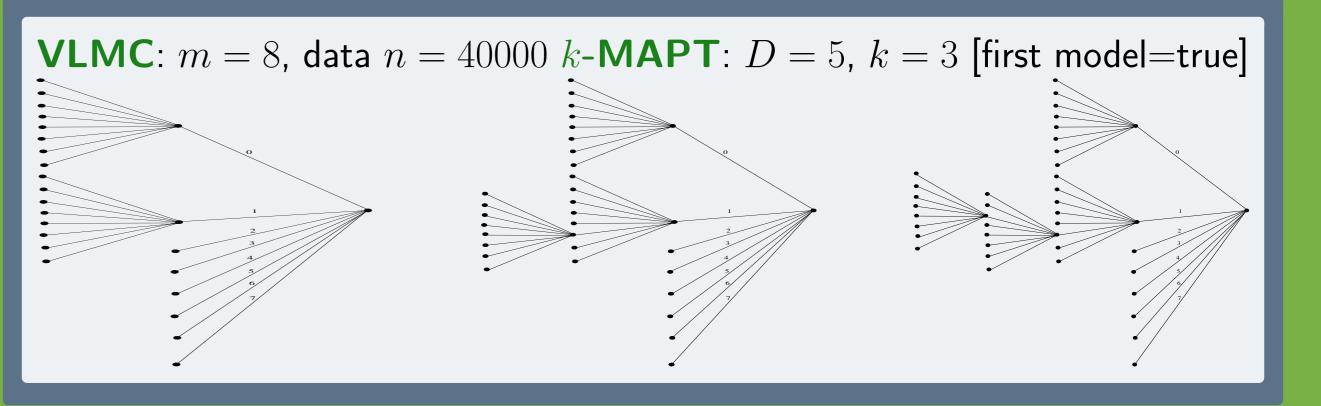
The weighted probability $P_{w,root}$ given by the MLA at the root is exactly equal to the marginal likelihood

Note MLA computes a "doubly exponentially hard" quantity in $O(n \cdot D)$ time; one of the very few examples - the most complex and interesting one - of nontrivial Bayesian models for which the marginal likelihood is explicitly computable

k-MAPT for same 5th-order VLMC



k-MAPT for a 2nd-order 8-symbol VLMC



 \triangle Our results are primarily motivated by: → The results of Willems, Shtarkov, Tjalkens and co. on data compression via the CTW and related algorithms \rightarrow Basic questions of Bayesian inference for discrete time series

 \triangle All our results can be seen as generalizations or extensions of results and algorithms in these earlier papers

 \triangle Here we ignore this connection entirely and present everything from the point of view of Bayesian statistics

* MAPT & k-MAPT Algorithms *

Theorem Two analogous algorithms **MAPT** and *k*-**MAPT** *provably* compute the most likely and the k most likely models with respect to the posterior distribution $\pi(T|X)$ on model space

Futher Results & Extensions

→ Posterior model probabilities \rightarrow Simulated and real data...

 \rightarrow MCMC Exploring the full posterior \rightarrow Truly Bayesian entropy estimation

