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Variable Length Markov Chains

Markov chain: {Xn} with
alphabet A = {0, 1, . . . ,m− 1}
Memory length d:
P (Xn|Xn−1, Xn−2, . . .) = P (Xn|Xn−1, . . . , Xn−d)

Distribution: To fully describe it need
to specify md conditional distributions
P (Xn|Xn−1, . . . , Xn−d) one for each context
(Xn−1, . . . , Xn−d)

Problem md grows very fast
e.g. m = 8 symbols & memory length d = 10
needs ≈ 109 distributions
Idea Use variable length contexts
described by a context tree T

VLMC Example

Alphabet m = 3 symbols, memory d = 5
θ02000
θ02001 context tree T
θ02002 .........
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Each past string Xn−1, Xn−2, . . . corresponds
to a unique context on a leaf of the tree
The distr of Xn given the past is given by the
distr of that leaf
E.g. P (Xn = 1|Xn−1 = 0, Xn−2 = 2, Xn−2 = 2,

Xn−3 = 1, . . .) = θ022(1)

The VLMC Likelihood

Likelihood Given a model (context tree) T
and parameters θ = (θs; s ∈ T )
the likelihood of Xn

1 is:
f (Xn

1 |X0
−D+1, θ, T ) = Πs∈TΠj∈Aθs(j)as(j)(1)

where as(j) = # times j follows s in X

VLMC Advantages

; E.g., above with memory length 5,
instead of 35 = 243 conditional distributions
only need to specify 13!
; For an alphabet of size m
and memory depth D there are mD contexts
⇒ potentially huge savings

; Determining the underlying context tree
of an empirical time series is of great
scientific and engineering interest

Motivation & Earlier Results

4 Our results are primarily motivated by:
; The results of Willems, Shtarkov,

Tjalkens and co. on data compression
via the CTW and related algorithms

; Basic questions of Bayesian inference
for discrete time series

4 All our results can be seen
as generalizations or extensions of results
and algorithms in these earlier papers
4 Here we ignore this connection entirely
and present everything from the point of view
of Bayesian statistics

Bayesian Modeling

A NEW Prior on models
Given m,D, for each α ∈ (0, 1) let

πD(T ) = α|T |−1β|T |−LD(T )

where β = 1− αm−1; |T | = # leaves of T ;
and LD(T ) = # leaves at depth D

Prior on parameters
Given a model (context tree) T
the parameters θ = (θs; s ∈ T )
are taken to be independent
each with Dirichlet(1/2, . . . , 1/2) distr:

π((θs; s ∈ T )|T ) = Πs∈T
Γ(m/2)
πm/2 Πj∈A

1√√√√θs(j)
Likelihood
Given T, θ, the likelihood of X = Xn

1 is:
f (X|θ, T ) = Πs∈TΠj∈Aθs(j)as(j)

The Goal of Bayesian Inference

Determine the posterior distributions:

Bayesian Inference for VLMCs

Notation. θ = (θs; s ∈ T ) for all the parameters (given T )

X = X−D+1, . . . X0, X1, . . . , Xn for all the observed data

Suppress dependence of the likelihood on the past X0
−D+1

The one and only goal of Bayesian inference

Determination of the posterior distributions:

π(θ, T |X) =
πD(T )π(θ|T )f(X|θ, T )

f(X)

and π(T |X) =

∫
θ f(X|θ, T )π(θ|T ) dθ

f(X)

Main obstacle

Determination of the marginal likelihood:

f(X) =
∑

T

πD(T )

∫

θ

f(X|θ, T )π(θ|T ) dθ

E.g. the number of models in the sum grows doubly exponentially in D
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E.g. the number of models in the sum
grows doubly exponentially in D

The Marginal Likelihood Algorithm

Given [formerly known as CTW]
Data X = X−D+1, . . . , X0, X1, . . . , Xn
alphabet size m & max model depth D

4 1. [Tree. ] Construct a tree with
nodes corresponding to all contexts
of length 1, 2, . . . , D contained in X
4 2. [Estimated probabilities. ]
At each node s compute the as and

Pe,s = Πj∈A[(1/2)(3/2) · · · (as(j)− 1/2)]
(m/2)(m/2 + 1) · · · (m/2 + n− 1)

4 3. [Weighted probabilities. ]
Let ρ = 1− αm−1; at each node s compute

Pw,s =

Pe,s, s a leaf
ρPe,s + (1− ρ)Πj∈APw,sj, o/w

Theorem
The weighted probability Pw,root given

by the MLA at the root is exactly equal
to the marginal likelihood
Note MLA computes a “doubly exponentially hard”
quantity in O(n·D) time; one of the very few examples
– the most complex and interesting one – of nontrivial
Bayesian models for which the marginal likelihood is
explicitly computable

* MAPT & k-MAPT Algorithms *

Theorem Two analogous algorithms
MAPT and k-MAPT provably compute
the most likely and the k most likely models
with respect to the posterior distribution
π(T |X) on model space

Experimental Results: IID Data

IID binary data X−D+1, . . . , X0, X1, X2, . . . , Xn

Distr Bern(1/20), length n = 50000 bits
k-MAPT Find the top k = 5 models, with max depth D = 15
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MAPT for the Earlier 5th-order VLMC

5th order VLMC data
X−D+1, . . . , X0, X1, X2, . . . , Xn, alphabet size m = 3
Distr VLMC as before (last MAP tree), data length n = 80000 symbols

MAPT
Find the MAP models with maximum depth D = 1, 2, 3, . . .
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k-MAPT for same 5th-order VLMC

k-MAPT: D = 12, k = 5, n = 25000
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k-MAPT for a 2nd-order 8-symbol VLMC

VLMC: m = 8, data n = 40000 k-MAPT: D = 5, k = 3 [first model=true]
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Futher Results & Extensions

; Posterior model probabilities ; MCMC Exploring the full posterior
; Simulated and real data... ; Truly Bayesian entropy estimation


