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Variable Length Markov Chains

Markov chain: {X,} with
alphabet A ={0,1,...,m — 1}

Memory length d:
P(X,| X1, X 9,...) = P(X,| X1, ..., Xsia)

Distribution: To fully describe it need
to specify m

d conditional distributions
P(X,|X,-1,...,X,_gq) one for each context

(Xn1,--, Xn_q)

Problem m¢ grows very fast
e.g. m = & symbols & memory length d = 10

needs ~ 10” distributions

Idea Use variable length contexts
described by a context tree T’

VLMC Example

Alphabet m = 3 symbols, memory d = 5
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Each past string X,,_1, X,,_o, ... corresponds
to a unique context on a leaf of the tree

The distr of X,, given the past is given by the
distr of that leaf

Eg P(Xn = 1‘X ] = O,Xn_g = Q,Xn_g = 2,
X, _3 = I, .. ) — (9022(1>

The VLMC Likelihood

Likelihood Given a model (context tree) T

and parameters 0 = (05;s € T))
the likelihood of X7 is:

f(X{L‘XgD—H) HaT) — HSETHjEA(93<j)a8(‘7/
where a4(j) = # times j follows s in X

VLMC Advantages

~~ E.g., above with memory length 5,

instead of 3° = 243 conditional distributions
only need to specify 13!

~~ For an alphabet of size m

and memory depth D there are m
= potentially huge savings

D contexts

~~ Determining the underlying context tree
of an empirical time series is of great
scientific and engineering interest
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Bayesian Modeling

A NEW Prior on models
Given m, D, for each a € (0, 1) let

7p(T) = o711 gITI=Lo(T)

where 3 =1— a1, |T| = # leaves of T
and Lp(T) = # leaves at depth D

Prior on parameters
Given a model (context tree) T

the parameters 6 = (05;s € T)

are taken to be independent
each with Dirichlet(1/2,...,1/2) distr:

D(m/2), 1
am/2 I g ()
Likelihood

Given 7', 0, the likelihood of X = X' is:
f(X|(9, T) — HseTHjEAes(j)as(j)

w((0s;5 € T)|T) = Tger

The Goal of Bayesian Inference

Determine the posterior distributions:
mp(T)m(0]T) f(X]0,T)

Main obstacle _ o
Computation of the marginal likelihood:

FX) = S molT) [ F(X16.Tm(6IT) dB

E.g. the number of models in the sum
grows doubly exponentially in D

The Marginal Likelihood Algorithm

Given [formerly known as CTW)|

Data X = X_p.q,..., Xy, Xq,..., X,
alphabet size m & max model depth D

A\ 1. [Tree. | Construct a tree with

nodes corresponding to all contexts
of length 1,2,..., D contained in X

A\ 2. |Estimated probabilities. |
At each node s compute the a; and

p . — Wealll/2)(3/2)- -~ (a5(4) = 1/2)}
T (m/2)(mf2+ 1) (m/2+n —1)

A\ 3. [Weighted probabilities. |

Let p =1 — o' at each node s compute

e s a leaf

Pws —
| pPe,s T (1 _ p)HjEAPw,Sja O/W

Theorem
The weighted probability P, ;o0 given

by the MLA at the root is exactly equal
to the marginal likelihood

Lausanne, Switzerland

Experimental Results: 1ID Data

11D binary data X_D_|_1,...,XQ,Xl,XQ,...,Xn
Distr Bern(1/20), length n = 50000 bits

E-MAPT Find the top £ = 5 models, with max depth D = 15

el
: 5

MAPT for the Earlier 5th-order VLMC

5th order VLMC data
X_pDi1y--.,X0,X1,X9,...,X,, alphabet size m = 3
Distr VLMC as before (last MAP tree), data length n = 80000 symbols

MAPT
Find the MAP models with maximum depth D =1,2.3,...

0 0 0
1 1 1
E 2 2
D=1 D=2 D=3

‘>>k-MAPT: D =12, k=5, n = 25000

k-MAPT for a 2nd-order 8-symbol VLMC

VLMC: m = 8, data n = 40000 .-MAPT: D =5, k = 3 [first model=true]

Note MLA computes a “doubly exponentially hard”
quantity in O(n- D) time; one of the very few examples
— the most complex and interesting one — of nontrivial
Bayesian models for which the marginal likelihood is
explicitly computable

Motivation & Earlier Results

/\ Our results are primarily motivated by:

~» The results of Willems, Shtarkov,
Tjalkens and co. on data compression

via the CTW and related algorithms
~~ Basic questions of Bayesian inference
for discrete time series

* MAPT & k-MAPT Algorithms *

/\ All our results can be seen
as generalizations or extensions of results

| . . Futher Results & Extensions
and algorithms in these earlier papers

Theorem Two analogous algorithms
MAPT and k.-MAPT provably compute

the most likely and the & most likely models
with respect to the posterior distribution

7(T|X) on model space

/\ Here we ignore this connection entirely ~> MCMC Exploring the full posterior

~~ Truly Bayesian entropy estimation

~~ Posterior model probabilities

and present everything from the point of view
of Bayesian statistics

~» Simulated and real data...




