Appendix

Printone: Interactive Resonance Simulation for Free-form Print-wind Instruments Design

submission ID:0163

May 17, 2016

A Boundary Formulation of Acoustics

To make the paper self-contained, we briefly explain the boundary formulation of the Helmholtz equation. We refer readers to the book [2] for more details of the BEM implementation. The Helmholtz equation (1) has a kernel

$$
\begin{equation*}
G(\mathbf{x}, \mathbf{y})=\frac{\exp (+i k r)}{4 \pi r}, \quad \text { where } r=\|\mathbf{x}-\mathbf{y}\| \tag{A.1}
\end{equation*}
$$

which is the fundamental solution to the Dirac delta function $\delta(\mathbf{x}-\mathbf{y})$. Using this kernel function, the second Stoke's theorem leads to the equation which the sound pressure on the surface $p(\mathbf{x})$ needs to satisfy

$$
\begin{align*}
& \frac{\Omega(\mathbf{x})}{4 \pi} p(\mathbf{x})+\int_{S} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}(\mathbf{y})} p(\mathbf{y}) d s(\mathbf{y}) \\
& =G\left(\mathbf{x}, \mathbf{x}_{s r c}\right), \mathbf{x} \in S \tag{A.2}
\end{align*}
$$

where the $\partial G(\mathbf{x}, \mathbf{y}) / \partial \mathbf{n}(\mathbf{y})$ derivative the kernel with respect to change of $\mathbf{y} \in S$ in the normal direction of the surface is

$$
\begin{equation*}
\frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}(\mathbf{y})}=\frac{\exp (+i k r)}{4 \pi r^{2}}(1-i k r) \frac{(\mathbf{x}-\mathbf{y}) \cdot \mathbf{n}}{\|\mathbf{x}-\mathbf{y}\|} \tag{A.3}
\end{equation*}
$$

The $\Omega(\mathbf{x})$ is a solid angle which takes 2π on a smooth surface, and is computed for triangle mesh using a formula presented in [3]. In our implementation, the sound pressure is stored at the vertices of a triangle mesh and linearly interpolated over the triangle faces. We discretize equation (A.2) using a typical collocation method, which formulates a linear system (3) by satisfying the equation at every vertex. We use a fifth-order Gaussian quadrature to compute this surface integration.

Once the reflection pressure at the vertices \mathbf{p} in (3) is solved, the pressure value at the observation point $\mathbf{x}_{\text {obs }}$ inside medium Ω is computed with the surface integration

$$
\begin{align*}
p\left(\mathbf{x}_{o b s}\right)=-\int_{S} \frac{\partial G\left(\mathbf{x}_{o b s}, \mathbf{y}\right)}{\partial \mathbf{n}(\mathbf{y})} p(\mathbf{y}) d s(\mathbf{y}) & \\
& +G\left(\mathbf{x}_{o b s}, \mathbf{x}_{s r c}\right), \mathbf{x}_{o b s} \in \Omega \tag{A.4}
\end{align*}
$$

Our implementation is specifically categorized as the conventional boundary integration method (CBIM), in contrast to a more sophisticated model such as the Burton-Miller method [1]. The CBIM often suffers from errors in the frequency where the complementary region of the media $\bar{\Omega}=\left\{\mathbf{x} \in \mathbb{R}^{3} \mid \mathbf{x} \notin \Omega\right\}$ has a fictitious resonance mode. In our simulation the complementary region $\bar{\Omega}$ is the solid region of the musical instrument. Since our complementary region $\bar{\Omega}$ is small compared to the cavity, the fictitious resonance mode is much higher compared to the fundamental cavity resonance frequency, and thus CBIM is adequate.

The off-diagonal (i, j)-entry of the resulting coefficient matrix $A_{i j}$ is approximately written as:

$$
\begin{equation*}
A_{i j} \simeq\left[\frac{\mathbf{r}_{i j} \cdot \mathbf{n}_{i}}{4 \pi r_{i j}^{3}} \Delta_{j}\right] \underbrace{\exp \left(+i k r_{i j}\right)\left(1-i k r_{i j}\right)}_{g(\gamma)}, \tag{A.5}
\end{equation*}
$$

where $\mathbf{r}_{i j}$ is a vector between i - and j-vertices, $r_{i j}=\left\|\mathbf{r}_{i j}\right\|$, the \mathbf{n}_{i} is the unit normal vector, Ω_{i} is the solid angle at the i-vertex, and Δ_{j} is one third of the area of triangles around j-vertex. Notice the nonlinearity of the coefficient matrix with respect to wavenumber k (see Sec. 5.1). Furthermore, the nonlinear dependent part $g(\gamma)$ is a function of $\gamma=k r_{i j}$ and if it is small, the linear approximation over the wavenumber is reasonable (see Sec. 6.2). Finally, the entry is invariant under the scaling geometry with s and scaling the wave number with $1 / s$ i.e., $r_{i j} \rightarrow s r_{i j}$ and $k \rightarrow k / s$ (see Sec. 8).

B The Minimum Eigenvalue Bounds the Magnitude of System's Output from Below

Here, we show that if the minimum eigenvalue of the system's coefficient matrix $\mathbf{A} \in \mathbb{C}^{N \times N}$ is very small, the magnitude of the output $\mathbf{p}=\mathbf{A}^{-1} \mathbf{f}$ becomes very large for almost arbitrary inputs $\mathbf{f} \in \mathbb{C}^{N}$. We denote the eigenpair of smallest and second-smallest magnitude eigenvalues of \mathbf{A} as $\left(\lambda^{0}, \mathbf{p}^{0}\right)$ and $\left(\lambda^{1}, \mathbf{p}^{1}\right)$. The following relationships holds according to matrix norm theory:

$$
\begin{equation*}
\frac{1}{\left|\lambda^{0}\right|}=\frac{\left|\mathbf{A}^{-1} \mathbf{p}^{0}\right|}{\left|\mathbf{p}^{0}\right|}, \quad \frac{1}{\left|\lambda^{1}\right|} \geq \max _{\substack{\mathbf{p} \in \mathbb{C}^{N} \\\left\langle\mathbf{p}, \mathbf{p}^{0}\right\rangle=0}} \frac{\left|\mathbf{A}^{-1} \mathbf{p}\right|}{|\mathbf{p}|} \tag{B.1}
\end{equation*}
$$

Note that we assume \mathbf{A} is non-Hermitian and invertible, which is typically true for exterior acoustic problems. For arbitrary input \mathbf{f}, the vector $\mathbf{f}_{\|}=$ $\left\langle\mathbf{f}, \mathbf{p}^{0}\right\rangle \mathbf{p}^{0} /\left|\mathbf{p}^{0}\right|^{2}$ is a projection of \mathbf{f} in the direction of \mathbf{p}^{0} and the vector $\mathbf{f}_{\perp}=\mathbf{f}-\mathbf{f}_{\|}$ is the remaining component. The output magnitude is bounded from below as

$$
\begin{align*}
|\mathbf{p}|=\left|\mathbf{A}^{-1} \mathbf{f}\right| & =\left|\mathbf{A}^{-1}\left(\mathbf{f}_{\|}+\mathbf{f}_{\perp}\right)\right| \tag{B.2}\\
& \geq\left|\mathbf{A}^{-1} \mathbf{f}_{\|}\right|-\left|\mathbf{A}^{-1} \mathbf{f}_{\perp}\right| \tag{B.3}\\
& \geq \frac{\left|\mathbf{f}_{\|}\right|}{\left|\lambda^{0}\right|}-\frac{\left|\mathbf{f}_{\perp}\right|}{\left|\lambda^{1}\right|} . \tag{B.4}
\end{align*}
$$

This relationship shows that the magnitude of output $|\mathbf{p}|$ will become larger than the input as long as the magnitude of λ^{0} is much smaller than the magnitude of λ^{1}, except for the very rare case where \mathbf{f} is perpendicular to \mathbf{p}^{0}.

C Sensitivity Derivation

To derive the sensitivity of the eigenvalue and resonance wavenumber (Equation (12)), we compute one iteration of the inverse power iteration in Algorithm 1 which is $\mathbf{w}=\mathbf{D A}^{-1} \mathbf{v}$. Let the matrix \mathbf{D} and \mathbf{A} be perturbed by a geometric change as $\mathbf{D}+\epsilon \Delta \mathbf{D}$ and $\mathbf{A}+\epsilon \Delta \mathbf{A}$, where ϵ is a small number. Then \mathbf{w} changes as

$$
\begin{align*}
\mathbf{w}+\epsilon \Delta \mathbf{w} & =(\mathbf{D}+\epsilon \Delta \mathbf{D})(\mathbf{A}+\epsilon \Delta \mathbf{A})^{-1} \mathbf{v} \tag{C.1}\\
& =(\mathbf{D}+\epsilon \mathbf{\Delta} \mathbf{D})\left\{\mathbf{A}\left(\mathbf{I}+\epsilon \mathbf{A}^{-1} \Delta \mathbf{A}\right)\right\}^{-1} \mathbf{v} \tag{C.2}\\
& =(\mathbf{D}+\epsilon \Delta \mathbf{D})\left(\mathbf{I}+\epsilon \mathbf{A}^{-1} \Delta \mathbf{A}\right)^{-1} \mathbf{A}^{-1} \mathbf{v} \tag{C.3}\\
& \simeq(\mathbf{D}+\epsilon \Delta \mathbf{D})\left(\mathbf{I}-\epsilon \mathbf{A}^{-1} \Delta \mathbf{A}\right) \mathbf{x}, \tag{C.4}\\
& =\underbrace{\mathbf{D A}^{-1} \mathbf{v}}_{=\mathbf{w}}+\epsilon \underbrace{\left(\Delta \mathbf{D} \mathbf{x}-\mathbf{D} \mathbf{A}^{-1} \Delta \mathbf{A} \mathbf{x}\right)}_{=\Delta \mathbf{w}} . \tag{C.5}
\end{align*}
$$

We use the Neuman expansion for the transformation from (C.3) to (C.4). We ignore the term $\Delta \mathbf{D} \mathbf{x}$ since we observed that its contribution is very small.

References

[1] Burton, A., and Miller, G. The application of integral equation methods to the numerical solution of some exterior boundary-value problems. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (1971), vol. 323, The Royal Society, pp. 201-210.
[2] Kirkup, S. M. The Boundary Element Method in Acoustics: A Development in Fortran (Integral Equation Methods in Engineering). Integrated Sound Software, 101998.
[3] Van Oosterom, A., and Strackee, J. The solid angle of a plane triangle. IEEE Transactions on Biomedical Engineering 2, BME-30 (1983), 125-126.

